

Comparison of the Learning Curve and Adaptive Behavior from Kids to Adults who Create
Mobile-Apps and Little Robots Using Block-Programming

Felipe Moreno-Vera, Universidad Católica San Pablo, Perú
Leonardo León-Vera, Universidad Nacional de Ingeniería, Perú

Juan Guizado-Vasquez, Universidad Nacional de Ingeniería, Perú
Michael Vera-Panez, Universidad Nacional de Ingeniería, Perú

The Asian Conference on Education 2018
Official Conference Proceedings

Abstract
Block programming presents an interactive and very simple way to learn to program, today
block programming applications allow you to develop and program the electronic hardware
components such as sensors and motors, whose relationship between hardware, software and
mobile applications are fundamental in this technological age. In this article we present a
study on how much the speed of learning differs and how much information retention
capacity children, adolescents and adults have in the same conditions of learning,
environment, tools and teaching system with the topic of creating robots through simulation
of electronic circuits. In addition, the manipulation of electronic components such as sensors,
motors and Bluetooth is presented.

Keywords: Learning, Education, Robotics, Kids, Teenagers, Adults, Programing languages,
Block Programming

iafor
The International Academic Forum

www.iafor.org

Introduction

In the context of Peru, the education methodology is not enough to a complete a certain level
of knowledge. Our target study subjects are people between the ages of 9 and 45, because is
the 57.232% of the total population (information was collected from [1]). Kids (6-9 years old)
have more easily way to learn and play with new tools [2], Teens (10-12 years old) and
Juniors (13-17 years old) have the same capacity to learn, but they have another distractions
that causes a little reduction in the learning curve for new things [3].

Adults (from 18 years old and on) have a different way to learn things about technology,
some of them have experience working with computers but others do not use computers in
daily life. We have approximately 100 children, 100 teens, 100 junior and 100 adults, each
group is divided into a group of 25 people with the same curriculum, the same materials, the
same teachers and the same 16 lessons (each lasts 3 hours a day).

Currently, in Perú we have a lot of devices distributed in all families, adults, teens and kids.
Is very common see a kid with a tablet or mobile phone at 8 years old playing games or using
social networks (with parental control like facebook) or watching videos about youtubers
(gamers with minecraft channels, fornite, etc).

In this context, we have technology in our hands every day any time, but in education until
this time, schools separate technology for the classrooms, schools don't use technology to
teach and don't tech how to use technology responsibly. So, this create a disorder in the
generation gap between people who use technology only for play games and those who do
not use technology to improve techniques or methodologies to teach or learn new things.

In other words we have population that explode technology in any another aspect except in
education and our consequence is that schools don't teach programming at early ages, our
young people learn computer concepts or how to programming in the university at age
between 20 and 22 years old. We try to break the gap through free courses of computational
thinking and algorithm design concepts hidden in courses called "Robotics for everyone" or
"game development for everyone" using different methodologies describe in the present
work, preparing people of all ages to a better understand of computer concepts and improve
computer skills.

For this situation with help of our universities we organize a course that involves learning
computer science concepts to develop simple programs using C and python language and
build robots with Arduino board.

For that, we measure how fast is the adaptive behavior of our students and how fast increase
the understanding of these concepts. We hide the concept of Computational Thinking inside
of "how to teach computer science using block programming" because computational
thinking is the way that any person can interpret the world in a computer and how can
extrapolate these concepts to real world. So while we teach about how interpret computer
science concepts, we teach how is computational thinking works in our lives [4].

Definitions and techniques

We need to understand important concepts those we use in our research, those concepts are
very useful when we try to measure and expose about the progress or difficulties of the
students while they are learning new things with enhanced methods through technology. We
use Learning Curve to define how they understand new concepts and Adaptive Behavior to
define performance and attitude against new concepts.

Learning Curve

We introduce the concept of Learning Curve as the representation how to increases the
learning based on experience. also, measuring if the student solve problems better than before
times.

Adaptive Behavior

We introduce the concept of Adaptive Behavior as how students accept or reject new
concepts. Also, we know that adults, kids and teens have different ways to learn and
understand things. The adaptive behavior is notorious when in the learning process they can
use examples based on computer science concepts or make jokes with computers or with
some new concepts than they never used before.

Script Language

Script Language is a technique used to explain concepts in an very short time with simple
examples, script languages are defined as a normal conversation with specific questions, the
answers could be any but in all of these answers, there is a concept hidden inside.

Metaphors

Metaphors is used to complete the understanding of the concepts givins another examples
based on the previous one, metaphors is very commonly used in the daily activity, in any
situation because is the most easy way to explain new things. we use metaphors to exaplin
computer science concepts with common examples.

Mind maps

Mind maps is a technique based in drawing a map based on a brain storming with connected
ideas like a graph \cite{mind_map_ref}. We use Mind maps to teach about mathematics
concepts, programming concepts and algorithm design concepts
\cite{teach_mindmaps_programming}.

Block Programming

Block Programming is a technique to encapsule code programming in a simple sentence and
the way to programming is just joining the blocks following a flow diagram or main idea. In
this research we try to test how efficient is teach computer science concepts and examples
using block programming in a first steps and how fast our students can improve skills
programming to jump from blocks to code in simple programs like programming sensors or
programming games, in this work we encourage to our students and our readers to practice to

thinking in blocks \cite{thinking_blocks} and think how easy could be the learning for future
generations topics like IoT or Data Science or Machine Learning with blocks, that research
field or develop is part of challenges to learn and understand block programming and how
you can add new libraries into a sequence of blocks \cite{challenge_blocks}.

Methodology

We started the classes with the empirical methodology based on Metaphors [5] because or
students are novices in the five stage of learning programming skills: novice, advanced
beginner, competence, proficiency, and expert [6]. That means, we teach using example of
different simple situations in the real life to explain what can we do to interact and which
solutions we provide to solve daily problems.

For difference age we use different methodology, as we mentioned above, there is a different
way of understanding and retention of information in all of these ages.

Learning Computer Science Concepts

To introduce computer science concepts, we starts with the main question "what is an
algorithm ?". To answer that question, we use first technique called script language used in
kids [2] in all ages.

At first time adults and Teens understood very fast, kids and tweens take a time to understand
the aim of that examples. We use different asks in different ages, simple questions to explain
that an algorithm is inside in any situation and in any action.

• Script language for kids

(Q): “If you want to go to the bathroom, what should you need to say ? How do clean
your desk ?"

• Script language for tweens

(Q): “Have you ever play a game in your computer ?, do you hear about PSP or
XBOX ?, Do you know what Mario Kart is it?".

• Script language for teens

(Q): “Do you know how to solve a linear equation ?, Which rules do you need to
follow when you play foot ball ?, Have your ever play guitar ?".

• Script language for adults

(T): “Have you ever developed something ?, do you hear about Programming
languages ?, Do you know what Software means?".

These questions look different but in the background they are very similar. In all categories,
they answered "Yes!" and then explained how it works with a sequence of steps. You can see
how many time it takes for them.

Implementing a mini Robot

In this section we introduce as the goal of the course the implementation of two mini robots
called Otto and Kyo (See Fig. 1). In this part, we use all methodologies to explain about
electronic components, the mathematical fundamentals and how they should to program the
sensors.

To implement and programming these robots, their movements and their sensors we use
Block programming and C language (with the concepts explained above) for this part we use
the online platform to simulate the component programming. To programming Otto we use
the platform BitBloq and to programming Kyo we use the platform Tinkercad.

At this time, we measure how fast they understand basic electronic concepts and components
description and how fast they can imagine a solution to programming using blocks.

We starts with script language then with metaphors and finally with mind maps to get a
solution for the problem of how should we programming these mini robots. But in thi part we
focus on programming skills and how they can translate their mind maps into a program
(blocks or programming language).

We note that there is a improving in programming speed after they understand the logic
following in the mind map previously drawn.

Results

As definition of learning curve, we need to verify if the average time of learning in previous
works in kids [2] and teens [3] is correct in all new concepts and for computer science we
need to add mathematic, physics and electronic components concepts. So we teach and refor
this topics with different methodologies, using the formula below we approximate the
average time to learning and we compare with the real average time get from the students.

We note that our average time in some cases is a bit less than the approximate time and also
is less than the average time mentioned in previous works.

Measuring the learning curve

As definition of learning curve, we need to verify if the average time of learning in previous
works in kids \cite{learn_kids_ref} and teens \cite{learn_teens_ref} is correct in all new
concepts and for computer science we need to add mathematic, physics and electronic
components concepts. So we teach and refor this topics with different methodologies, using
the formula below we approximate the average time to learning and we compare with the real
average time get from the students.

We note that our average time in some cases is a bit less than the approximate time and also
is less than the average time mentioned in previous works.

Where:

K: Number of hours used to understand the first unit (or task).

: Number of hours to understand the unit.
x: Number of the unit.
b: Percent of learning.

So, we have this tables with respective approximations. We take the K value from the first
part in script languages in Table I we take b from [7] and x is equal to 4, because is the 4th
unit.

TABLE I. TABLE OF AVERAGE TIME TO DESCRIBE AND SOLVE.
How many time takes to learn a new concept with examples ?

Category Time to describe the
problem

Average Time to
solve

Previous work time

Kids 55-65 min 66.486 min 68.64 min
Tweens 52-56 min 57.365 min 56.49 min
Teens 42-52 min 50.934 min 51.32 min
Adults 25-41 min 42.163 min 40.89 min

Conclusion

This work introduces the different adaptive behavior with different methodologies in the
learning speed of kids, tweens, teens and adults. We note that tweens and teens have more
ability to understand new concepts using games as metaphors. Adults have a strong learning
speed to understand new concepts based on past experience. From kids to juniors, they
present a fast learning speed, but they forget concepts in a little period of time.

Table I shows the results of manage the learning curve after all the tasks and show us that
learning time don't depend of an specific topic, depends of the methodology applied to teach
that.

Acknowledgments

This work was supported by grant 234-2015-FONDECYT (Master Program) from
CienciActiva of the National Council for Science,Technology and Technological Innovation
(CONCYTEC-PERU).

References

INEI, Population index, Lima, Perú, https://www.inei.gob.pe/estadisticas/indice-
tematico/population/, Last accessed 2 Feb 2018.

Shahla Gul, Muhammad Asif, Waqar Ahmad and Uzair Ahmad: Teaching Programming: A
Mind Map based Methodology to Improve Learning Outcomes. In: International Conference
on Information and Communication Technologies (2017).

D. Pérez-Marín, R. Hijón-Neira, M. Martín-Lope : A Methodology Proposal based on
Metaphors to teach Programming to children, In: IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje (2018).

D. Ginat: On novice loop boundaries and range conceptions, In: Computer Science Education
(2004).

A. Robins ,J. Rountree, and N.Rountre: Learning and teaching programming: A review and
discussion, In: Computer Science Education (2003).

Sajana Sigde, Technology and Learning Capacity of Children: A Positive Impact of
Technology in Early Childhood, Johnson & Wales University - Providence.

Amanda Lenhart, Paul Hitlin and Mary Madden, Teens and Technology, PEW INTERNET
& AMERICAN LIFE PROJECT.

