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Abstract. Currently, one important field on machine learning is Urban
Perception Computing is to model the way in which humans can interact
and understand the environment that surrounds them. This process is
performed using convolutional models to learn and identify some insights
which define the concept of perception of a place (e.g. a street image).
One approach of this field is urban perception of street images, we will
focus on this approach to study the safety perception of a city and try to
explain why and how the perception can be predicted by a mathematical
model. As result, we present an analysis about the influence and impact
of the visual components on the safety criteria and also an explanation
about why a certain decision on the perception of the safety of the streets,
such as safe or unsafe.
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LIME · Computer Vision · Perception Computing · Deep Learning ·
Street-level imagery · Visual processing · Street View · Cityscape · Per-
ception Learning· Grad-CAM.

1 Introduction

“Cities are designed to shape and influence the lives of their inhabitants” [13].
Various studies have shown that the visual appearance of cities plays a central
role in human perception and reaction to said environment such as ”The image
of the city” [15]. A notable example is the Broken Window Theory [39] which
suggests that visual signs of environmental disruption, such as broken windows,
abandoned cars, trash, and graffiti, can induce social outcomes like increase crime
levels. This theory has had a great influence on public policy strategies that lead
to aggressive police tactics to control the manifestations of social and physical
disorder. For example, in social experiments and studies on the perceived quality
of life in the streets of New York, comparing impeccable places such as shopping
malls (clean walls, orderly, quiet) with other places in which graffiti or garbage is
presented [10, 28, 37, 15] concluding that in places where “the rules are violated”
it means that in the long term, none of the rules will be fulfilled in that place
negatively influenced by the environment (e.g. graffiti, garbage).

In addition, other studies have shown that the visual aspect of the spaces of
a city affect the psychological state of its inhabitants [13, 9]; Other studies show
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that the impact of green areas in urban cities [38, 27] has a positives relation to
safety perception. In this study, we present a deep learning-based methodology
and a model to predict and understand human perceptions of the physical setting
of a place. The approach is able to predict, understand and explain predictions
of the security perception accurately for a new urban region. Second, we studied
the relationship between urban visual elements and perceptions, and tried to
determine “the importance of visual elements and their influence over a specific
perception”. This result helps urban planners and researchers to understand
the positive or negative impact of various visual components by exploring urban
patterns. The present document is organized by the following: section II is about
Related works; section III we present our Methodology; section IV Discussions
and results; and finally, Conclusions of this work. Our main contributions is a
methodology to train and explain urban perceptions from street-images.

2 Related Works

Previous works have a difficulty to explain the direct relation between visual
appearance of a city and their corresponding non-visual attributes. These works
made an study focus on find a relation between datasets like reports like crimes
statistic, robbery rate, house prices, population density, graffiti presence (local
reports), and a danger perception survey; with visual appearance of one city.

2.1 Urban Perception

There is a selected works based on urban perception and how to determine using
computational methods. The main goal of these works is to correlate a visual
appearance of a city with their non-visual attributes like crimes, house prices,
perception surveys, etc. These works are solving questions like “What makes
Paris look like Paris?” [6] to compare, differentiate and correlate the visual ap-
pearance (features) between 12 cities. A similar approach was proposed to an-
swer “What Makes London Look Beautiful, Quiet, and Happy?” [22] exploring
700,000 street-images through a online web survey. [4] studied the correlation
between visual non-attributes from city and their visual appearance using sev-
eral dataset like crimes statistic, robbery rate, house prices, population density,
graffiti presence (local reports), and a danger perception survey.

In addition, MIT Media Lab releases the PlacePulse dataset [25] which is
compose by a street images from difference main cities like New York, Boston,
Linz, and Salzburg; and a corresponding perceptual score associated. This work
was born from the attempt to relate people’s perception of a street through an
online survey. This dataset conduced new studies like urban mapping [20] which
performs a classification/regression task using and comparing the performance of
features extractors like Gist, SIFT + Fisher Vectors, and DeCAF [7]. StreetScore
[17] compares GIST, Geometric Probability Map, Text on Histograms, Color His-
tograms, Geometric Color Histograms , HOG 2x2, Dense SIFT, LBP , Sparse
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SIFT histograms, and SSIM features extractors doing a similar research. Fol-
lowing this methodology, a similar study was performed over the city Bogotá,
Colombia called Wmodi [1].

In summary, these works have difficulty in extracting information about the
natural image because they use classical image features including Hog+Color de-
scriptor, Locality-Sensitive Hashing, Gist, [4], SIFT Fisher Vectors, DeCAF fea-
tures [20], geometric classification map, color Histograms, HOG2x2, and Dense
SIFT [17]. Other works use non-linear models to predict images like SVM [5]
and Linear Regression [20], Support Vector Regression was used in [17], Rank-
ingSVM was used in [21], SVR was implemented in [4], Multi Task Learning,
Transfer Learning based models on ImageNet, and pre-trained networks in [18,
8, 40, 16, 11, 1].

2.2 Model Interpretation

Model interpretation methods helps us to get insights and understand our learn-
ing process and the behavior of a model. In Interpretable Machine Learning,
there are several works whose purpose is to understand and explain predictions.
Usually, models like CNN are called “black-box” due to they have a large num-
ber of parameters distributed in hidden layers with unknown information shared
through each layer. Previous works such as LIME [23], SHAP [14], and Anchor
[24] explain a model based on their local and global level features components.
Other approach based on gradient attribution methods to generate feature maps
of an input to provide a visual idea about the explanation like Saliency Maps [32],
Gradient [31], Integrated Gradients [36], DeepLIFT [30], CAM [41], Grad-CAM
[29], Guided Back Propagation [35], Guided gradCAM[29], and SmoothGrad
[3]. These methods are useful to explain simple or complex black box models
identifying the dependence of variables and determine if one of them can be iso-
lated or not, in addition to which one has a better representation for prediction
depending on the input type.

In this work, our approach is to understand the behavior of the urban per-
ception trained on a convolutional network based model using the PlacePulse
dataset, composed by images and associate perceptual scores. We want to un-
derstand which features impact positive and negative in the perception of safety
in street images.

3 Methodology

Our methodology was divided into three parts: (i) dataset pre-processing, (ii)
Model training and evaluation, and (iii) Model Interpretation.

3.1 Dataset

PlacePulse has two versions, the first one is Placepulse 1.0 is a dataset composed
by a set of images and their correspond perceptual scores. The second one,
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PlacePulse 2.0 [8] is a dataset composed of a set of comparisons between 2
images, containing the latitude and longitude for each image. In addition, each
comparison has the respective winner (or draw).

Place Pulse 1.0 At the end of 2013, Place Pulse 1.0 contains a total of 73,806
comparisons of 4,109 images from 4 cities: New York City (including Manhattan
and parts of Queens, Brooklyn and The Bronx), Boston (including parts of
Cambridge), Linz and Salzburg of two countries (US and Austria) and three
types of comparisons: safe, wealth, y unique. This dataset has been pre-processed
for quick use, containing information on the position of each image (latitude and
longitude), perception score for each category, an image identifier and the city
to which said image belongs.

Place Pulse 1.0

City # images safe mean wealth mean unique mean

Linz 650 4.85 5.01 4.83

Boston 1237 4.93 4.97 4.76

New York 1705 4.47 4.31 4.46

Salzburg 544 4.75 4.89 5.04

Total 4136

Table 1. Data summary about Place Pulse 1.0 and their respective category mean.

Place Pulse 2.0 In 2016, Place Pulse 2.0 already contained around 1.22 million
comparisons of 111,390 images of 56 cities in 28 countries across the 5 continents
and six types of comparisons: safe, wealth, depress, beautiful, boring, and lively.
This dataset contain 8 columns: image ID (left and right), latitude and longi-
tude (of each image), the result of the comparison, and the respective evaluated
category.

We perform an algorithm proposed by [26] to pre-process all comparisons
in the dataset: for each compared image i with other images j many times in
different categories, we define as the intensity of perception of any image i as
the percentage of times that the image was selected. Besides, the intensity of j
affects i intensity. Due to this, we define the positive rate Wi (1) and the negative
rate Li (2) of an image i corresponding to a specific category:

Wi =
wi

wi + di + li
(1)

Li =
li

wi + di + li
(2)
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Where, wi is the number of wins, li number of loses, and di draws; From the
equations 1 and 2 we can calculate the perceptual score associated for each an
image i called Q-score with notation qi,k in a category k:

qi,k =
10

3
(Wi,k +

1

nwi,k
(
∑
j1

Wj1,k)− 1

nli,k
(
∑
j2

Lj2,k) + 1) (3)

The Equation 3 is the perceptual score of the image i to be ranked, where
j is an image compared to i, nwi is equal to the total number of images i beat
and nli is equal to the total number of images to which i lost. Besides, j1 is the
set of images that loses against the image i and j2 is the set of images that wins
against the image i.

Finally, Q is normalized to fit the range 0 to 10, this scale is a standard when
you evaluate perceptions [19]. In this scores, 10 represents the highest possible
score for a given question. As an example, if an image receives a calculated score
of 0 for the question “Which place looks safer?” that means that specific image
is perceived as the least safe image in the dataset.

Place Pulse 2.0

Continent # cities # images

America 22 50,028

Europe 22 38,747

Asia 7 11,417

Oceania 2 6,097

Africa 3 5,101

Total 56 111,390

(a)

Place Pulse 2.0

Category # comparisons mean

Safety 368,926 5.188

Lively 267,292 5.085

Beautiful 175,361 4.920

Wealthy 152,241 4.890

Depressing 132,467 4.816

Boring 127,362 4.810

Total 1,223,649
(b)

Table 2. Statistics obtained after process all comparisons from Place Pulse, containing
information about images per cities in each continent and the mean score for each
category asked.

3.2 Experiments

In this work, we adapted the VGG16 [33] architecture and our adapted a modi-
fication to GAP [12] called VGG16-GAP, we modify the last layer of the block-
conv5, taking the Max-Pooling layer and replacing for a GAP layer. This mod-
ification aims to extract more informative and high-level features from input
images through Global Average Pooling. Once we extract features with this ar-
chitecture presented in Figure 1. Then we remove last 2 Fully Connected layer
from original model architecture after layer 13, we call the output of this layer as
the features extracted from VGG-GAP. We train our Place Pulse dataset focus
on two main cities: Boston and New York with perceptual metric safety (we
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study other metric as well). We select both cities because these cities have the
most images quantity and comparisons between images.

Fig. 1. Our adaptation of VGG16-GAP for both tasks.

We will focus our study comparing three main feature extractors: VGG16,
VGG16-GAP, and GIST. Due to the reported results in several preivous works in
street images described above, we select GIST as baseline feature extractor. To
train our VGG16-GAP model, we used a Transfer Learning fine-tuned strategy in
the classification and regression task. We use the pre-trained weights of ImageNet
dataset, which contains millions of images across 1,000 classes. Then, we freeze
our 10 first layers (from input until block4conv3), training only the Block-Conv5.
To train the dataset, we make two experiments. The first one is the classification
task: To perform this task we divided our images into two labels for each category
in the dataset: e.g. safe and not safe. To select which set of images will be safe or
unsafe, we define a parameter called δ with a value between 0,05 - 0,5. This delta
will creates a subset using the binary labels yi,k ∈ {1,−1} for both training and
testing as:

yi,k =

{
1 if (qi,k)in the top δ%

-1 if (qi,k)in the bottom δ%
(4)

We parameterize the classification problem by a variable δ and calculate
performance as we adjust δ. As we move the value of our parameter δ the problem
becomes more difficult since the visual appearance of the positive and negative
images starts to become less evident up to the point when δ = 0,5. At the same
time when δ has smaller values the positive and negative images are easier to
classify but we have access to less data.

We learn models to predict yi,k from input image representations xi using
the following methods to extract features: VGG16 based-line, VGG16-GAP, and
GIST. We train and compare the behavior of linear and non-linear models reg-
ularized with l2 like Logistic Regression: L(y, f(x)) =

∑n
i=1 log(e(−yi∗f(xi)) + 1),
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Linear SVC : L(y, f(x)) =
∑n

i=1max(0, 1−yif(xi)), Ridge Classifier : L(y, f(x)) =
sgn(||y − f(x)||22 + ||w||22), VGG16-Softmax, and VGG16-GAP -Softmax both

with loss function L(y, f(x)) = e(yi−f(xi))∑n
k=1 e(yk−f(xk)) + ||w||22.

(a) Gist (b) VGG16 (c) VGG16-GAP

Fig. 2. Test classification results: 10 KFolds cross-validation Avg AUC over the city
Boston trained using GIST, VGG16, and VGG16-GAP as feature extractor. VGG16-
GAP achieves higher metric values than Gist and VGG16 along the different values of
our parameter δ.

We evaluated our binary classifier model behavior using the Area Under the
Curve (AUC) metric which depends on Precision-Recall as we report in Figure 2.
We use a regularization l2 to avoid overfit our model. We set the regularization
parameter C using held-out data and learn wk using training data {xi, yi,k}.

Test Boston Test New York

Training Métrica VGG16-GAP VGG16 Gist VGG16-GAP VGG16 Gist

safety 71.428 70.322 71.064 67.741 59.354 64.721
Boston wealthy 67.741 63.88 66.334 65.897 64.183 61.458

uniquely 63.354 61.935 62.486 63.773 63.858 63.564

safety 66.459 65.512 65.842 66.968 64.741 66.874
New York wealthy 64.748 62.111 63.265 63.8032 60.001 62.997

uniquely 68.322 64.748 66.349 62.895 62.468 62.968

Table 3. We report Test classification for δ=0,5 in two scenarios: a) training and
testing perceptual prediction models on images from the same city, and b) training
models on images from one city and testing on images from another city. We present
that our VGG16-GAP has a better performance except in the perceptual category
uniquely.

The second one is the regression task: To perform this task we divided our
images in the same way as we divided before. In this case, we want to predict
not the category but the perceptual score associate with an image which we
calculated before (Equation 3). Here, our ground truth labels are yi,k = qi,k
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for image i and perceptual measure k. Therefore, we make predictions ŷi,k as
a linear combination of the extracted features xi corresponding to image i as
follows:

ŷi,k = qi,k (5)

To perform our experiments, we train our set (xi, yi,k) using linear and non-
linear methods regularized with l2 like: Ridge: L(y, f(x)) = ||y − f(x)||22 +
||w||22, Lasso: L(y, f(x)) = 1

2∗n ||y − f(x)||22 + ||w||1, Linear SVR: L(y, f(x)) =∑n
i=1max(0, |yi − f(xi)|), and a simple Linear Regression: L(y, f(x)) = ||y −

f(x)||22. We choose the Pearson coefficient as a metric of regression models, we se-
lect this metric because we want to achieve a high correlation between extracted
features from images with their correspond yi,k:

Methods

City Feature Extractor LinearSVR LinearRegress Lasso Ridge

VGG16-GAP 0.7095 0.5717 0.71342 0.7462
Boston VGG16 0.6832 0.6354 0.70001 0.7163

GIST 0.66643 0.41612 0.6569 0.6658

VGG16-GAP 0.5649 0.6196 0.6503 0.7209
New York VGG16 0.6062 0.60487 0.64531 0.70986

GIST 0.59157 0.5734 0.61991 0.68732

Table 4. We report Test regression task trained with SVR-l2. We note that regression
task has a best behavior over Boston and VGG16-GAP provides the best results in
both cities.

3.3 Model Explanation

In this work, we want to understand why our street images that are predicted
as “safe” or “not safe”. To do this, we compare two explainers: The first one is
LIME, a local interpretable model-agnostic technique. LIME explains a black-
box model by simulating local candidates close to the original prediction. Using
these predictions, LIME generates a random distribution set of possible predic-
tions based on L2 distance called “local fidelity” taken as reference the original
prediction. Then, LIME select which possibles random noises could be a good
samples to evaluate using its Submodular Pick Algorithm (SP-LME) trained by
a SVM.

The second one is Grad-CAM, this method presents a strong behavior in
interpret convolutional networks [2]. In this work, a comparison of robustness
against adversial attack was performed. This work shows that Grad-CAM is
strong against adversarial attacks, unlike CAM [41], Gradient Input [31], In-
tegrated Gradients [36], GBP [35], Smoothed Gradients [34], Grad-CAM and
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(a) Score: 8.35 (b) Score: 4.22 (c) Score 1.06

(d) Prediction: safe (e) Prediction: not
safe

(f) Prediction: not
safe

(g) Prediction: safe (h) Prediction: not
safe

(i) Prediction: not
safe

Fig. 3. Images from Boston (first row) with their respective predicted scores and class
predicted. Besides, we present LIME outputs (second row) in which green regions
mean positive and red ones mean negatives impacts of the features of a prediction.
Furthermore, Grad-CAM results (third row) only shows the highlighted positive regions
with more importance for the prediction.

Guided Grad-CAM [29], and DeepLIFT [30]. As we can see on Figure 3, both
methods highlight different regions for the same prediction sample. We can eas-
ily visualize which part of an input image was learned by the model and which
regions are relevant to the prediction.

4 Discussions

This work presents a methodology to teach a machine how to learn features to
differentiate perceptions using the Place Pulse dataset, and explain predictions
about urban perception. This work was focused on safety perception processing
and calculate the safe perceptual scores of street images. We adapt the VGG16
model modifying the MaxPool for a GAP operation layer. We compare VGG16,
VGG16-GAP, and GIST performance in regression and classification task vary-
ing the quantify of images depending on our parameter δ varying from 0,05 to
0,5. For evaluations, we calculate the Area Under the Curve (AUC) for clas-
sification task. For regression, we trust in the Pearson Correlation Coefficient
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which report the correlation between a image and their associated perceptual
score (see Tables 3 and 4).

To understand our model predictions, we use and compare two model ex-
plainer like LIME and grad-CAM. With these both methods, we analyze the
resulting highlighted regions about safety perception predicted per image and
visualize the impact of important features as you can see in Figure 3. For unsafe
predictions, Grad-CAM highlights asphalt, fence, and walls. Instead of LIME,
which presents a random behavior over the regions, sometimes highlight sky,
asphalt, trees, grass, cars, earth or fences. For safe predictions, Grad-CAM high-
lighted regions are associated with green areas (trees and grass) as well as LIME.
Nonetheless, LIME has a lack of importance due to the main features which have
a positive impact on safe prediction usually are shadows, clouds, or asphalt as
well.

Limitations : We found three main limitations in this work. The first one is
about the Place Pulse dataset that was constructed using a online survey. Here
each volunteer chooses between two images that are the most ”safe” depend-
ing on their biased personal perception criteria. The second limitation is the
small number of sample images per city. Comparing with other dataset which
has millions of samples, our total is not above of 100,000 generating a lack of
robustness when training a model with few sample data. The last limitation is
the impossibility of creating a general city perceptual predictor, due to the large
difference between cities and their unique visual appearance.

5 Conclusions

In this work, we propose a methodology that allows us to understand the be-
havior of the urban perception of safety from street images. To do this, we
pre-process the dataset Place Pulse 2.0 analyzing the 110 thousand images ob-
tained by comparisons and calculated their corresponding perception scores in
six categories. We focus our study on the safety scores to analyze which parts
of the images are impacting positively and negatively in the predictions. To un-
derstand this predictions, we use and compare two model explainers LIME and
Grad-CAM which show us the impact of the features extracted from the image.
We conclude from this work that our model is capable to predict the safety per-
ception from street image. Besides, we show the correlation between high safety
perception with the presence of trees or green areas.
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