
Comparison of the learning curve and adaptive
behavior from kids to adults using computational
thinking with Block-Programming to Technology

Enhanced Learning
1st Felipe Moreno-Vera

School of Computer Science
Universidad Nacional de Ingenierı́a

Lima, Perú
felipe.moreno.v@uni.pe

2nd Leonardo León-Vera
School of Computer Science

Universidad Nacional de Ingenierı́a
Lima, Perú

lleonv@uni.pe

3rd Juan Moreno-Motta
School of Informatics and System Engineering
Universidad Nacional Mayor de San Marcos

Lima, Perú
juan.moreno2@unmsm.edu.pe

4th Juan Guizado-Vasquez
School of Physics Engineering

Universidad Nacional de Ingenierı́a
Lima, Perú

jd.guizado.v@uni.pe

5th Michael Vera-Panez
School of Physics Engineering

Universidad Nacional de Ingenierı́a
Lima, Perú

mvera@uni.pe

Abstract—In this article we present a study on how much
the learning speed differs and how much information retention
capacity children between 6 to 9 years old, adolescents between
10 to 13 years old, young people between 14 to 17 years old
and adults from 18 years old Who have in the same conditions
of learning, same environment, same classes, same tools and the
same methodology, such as mental maps, computational thinking
and scripting language questions with the aim of learning
concepts about algorithms, objects and classes applied to create
robots, IoT concepts and Electronic hardware concepts through
different online platforms using Block Programming. In addition,
the way in which the learning curve is measured is evaluating the
ability to retain, skill gained and how much they have learned
during the course of a certain time, also the methodology that
they use to solve problems.

Index Terms—Learning, Education, Robotics, Kids, Teenagers,
Adults, Block, Programing languages, Computer games, Block
programming, Technology, Computational Thinking.

I. INTRODUCTION

A. Present context

In the context of Peru, the education methodology is not
enough to a complete a certain level of knowledge. Our target
study subjects are people between the ages of 9 and 45,
because is the 57.232% of the total population (information
was collected from [2]). Kids (6-9 years old) have more easily
way to learn and play with new tools [3], Teens (10-12 years
old) and Juniors (13-17 years old) have the same capacity to
learn, but they have another distractions that causes a little
reduction in the learning curve for new things [4].

Adults (from 18 years old and on) have a different way to
learn things about technology, some of them have experience

978-1-7281-1666-2/19/$31.00 2019 IEEE

working with computers but others do not use computers in
daily life. We have approximately 100 children, 100 teens, 100
junior and 100 adults, each group is divided into a group of 25
people with the same curriculum, the same materials, the same
teachers and the same 16 lessons (each lasts 3 hours a day),
based on our previous work [1] we continue and complete our
research.

B. Description of the current situation of education and
accessibility to technology

Currently, in Per we have a lot of devices distributed in all
families, adults, teens and kids. Is very common see a kid
with a tablet or mobile phone at 8 years old playing games or
using social networks (with parental control like facebook)
or watching vides about youtubers (gamers with minecraft
channels, fornite, etc).

In this context, we have technology in our hands every day
any time, but in education until this time, schools separate
technology for the classrooms, schools don’t use technology
to teach and don’t tech how to use technology responsibly. So,
this create a disorder in the generation gap between people
who use technology only for play games and those who do
not use technology to improve techniques or methodologies to
teach or learn new things.

In other words we have poblation that explote technology in
any another aspect except in education and our consequence is
that schools don’t teach programming at early ages, our young
people learn computer concepts or how to programming in the
university at age between 20 and 22 years old. We try to break
the gap through free courses of computational thinking and
algorithm design concepts hidden in courses called ”Robotics

for everyone” or ”game development for everyone” using dif-
ferent methodologies describe in the present work, preparing
people of all ages to a better understand of computer concepts
and improve computer skills.

C. Research objective and motivation
For this situation with help of our universities we organize

a course that involves learning computer science concepts to
develop simple programs using C and python language and
build robots with Arduino board.

For that, we measure how fast is the adaptive behavior
of our students and how fast increase the understanding
of these concepts. We hide the concept of Computational
Thinking inside of ”how to teach computer science using block
programming” because computational thinking is the way that
any person can interprete the world in a computer and how can
extrapolate these concepts to real world. So while we teach
about how interpret computer science concepts, we teach how
is computational thinking works in our lives [5].

II. DEFINITIONS AND TECHNIQUES

We need to understand important concepts those we use
in our research, those concepts are very useful when we try
to measure and expose about the progress or difficulties of
the students while they are learning new things with enhanced
methods through technology. We use Learning Curve to define
how they understand new concepts and Adaptive Behavior to
define performance and attitude against new concepts.

A. Learning Curve
We introduce the concept of Learning Curve as the repre-

sentation how to increases the learning based on experience.
also, measuring if the student solve problems better than before
times.

B. Adaptive Behavior
We introduce the concept of Adaptive Behavior as how

students accept or reject new concepts. Also, we know that
adults, kids and teens have different ways to learn and under-
stand things. The adaptative behavior is notorious when in the
learning process they can use examples based on computer
science concepts or make jokes with computers or with some
new concepts than they never used before.

C. Script Language
Script Language is a technique used to explain concepts in

an very short time with simple examples, script languages are
defined as a normal conversation with specific questions, the
answers could be any but in all of these answers, there is a
concept hidden inside.

D. Metaphors
Metaphors is used to complete the understanding of the

concepts givins another examples based on the previous one,
metaphors is very commonly used in the daily activity, in any
situation because is the most easy way to explain new things.
we use metaphors to exaplin computer science concepts with
common examples.

E. Mind maps

Mind maps is a technique based in drawing a map based
on a brain storming with connected ideas like a graph [6].
We use Mind maps to teach about mathematics concepts,
programming concepts and algorithm design concepts [7].

F. Block Programming

Block Programming is a technique to encapsule code pro-
gramming in a simple sentence and the way to programming is
just joining the blocks following a flow diagram or main idea.
In this research we try to test how efficient is teach computer
science concepts and examples using block programming in
a first steps and how fast our students can improve skills
programming to jump from blocks to code in simple programs
like programming sensors or programming games, in this work
we encourage to our students and our readers to practice to
thinking in blocks [8] and think how easy could be the learning
for future generations topics like IoT or Data Science or
Machine Learning with blocks, that research field or develop is
part of challenges to learn and understand block programming
and how you can add new libraries into a sequence of blocks
[9].

III. METHODOLOGY

We started the classes with the empirical methodology based
on Metaphors [10] because or students are novices in the five
stage of learning programming skills: novice, advanced begin-
ner, competence, proficiency, and expert [11]. That means, we
teach using example of different simple situations in the real
life to explain what can we do to interact and which solutions
we provide to solve daily problems.

For difference age we use different methodology, as we
mentioned above, there is a different way of understanding
and retention of information in all of these ages.

A. Learning Computer Science Concepts

To introduce computer science concepts, we starts with
the main question ”what is an algorithm ?”. To answer that
question, we use first technique called script language used in
kids [3] in all ages.

At first time adults and Teens understood very fast, kids and
tweens take a time to understand the aim of that examples. We
use different asks in different ages, simple questions to explain
that an algorithm is inside in any situation and in any action.

• Script language for kids
(Q): If you want to go to the bathroom, what should you
need to say ? How do clean your desk ?”

• Script language for tweens
(Q): Have you ever play a game in your computer ?,
do you hear about PSP or XBOX ?, Do you know what
Mario Kart is it?”.

• Script language for teens
(Q): Do you know how to solve a linear equation ?,
Which rules do you need to follow when you play foot
ball ?, Have your ever play guitar ?”.

• Script language for adults

(T): Have you ever developed something ?, do you hear
about Programming languages ?, Do you know what
Software means?”.

These questions look different but in the background they
are very similar. In all categories, they answered ”Yes!” and
then explained how it works with a sequence of steps. You
can see how many time it takes for them in Table I.

TABLE I
TABLE OF AVERAGE TIME TO THINK ABOUT THE SITUATION AND SOLVE.

Category Situations time thinking range
Kids How to go to the bathroom 18-34 min

Tween How turn on a computer 17-25 min
Teen How to use pythagoras theorem 15-20 min

Adults how to develop a software project 10-15 min

B. Improving programming skills

To introduce programming skills, we explain programing
language with CodeCombat [13] with python language and
BlocklyGames [14] with blocks and javascript language.

Blockly Games and Codecombat provide some tests to
improve and teach about concepts like algorithms, loops,
conditionals, functions and logic operations. To measure the
understanding of the concepts we starts with simple samples
like labyrinth in Blockly Games or programming actions in
CodeCombat.

CodeCombat as Blockly games, uses methods to give di-
rection to simulate movement of the character inside the maze
level (See Figure 1).

Until the exercise of the game finish, we note that program-
ming code was more easy than blocks for the students. That is
because they use mind map technique [7] and others use script
language to idenfity situations, more experienced students can
implement directly.

TABLE II
TABLE OF AVERAGE TIME TO DESCRIBE AND SOLVE THE LOOP PROBLEM.

Category time thinking the problem time to solve the problem
Kids 20-30 min 20-30 min

Tween 14-21 min 15-20 min
Teen 11-16 min 10-15 min

Adults 6-12 min 9-17 min

After loop example we can identify the best method to
understand it for students was a combination of mind maps
(See Table II), script language and mepathors, in other words, a
combination of all methodologies is necesasary for a complete
learn. In previous works, they just using the methodology of
script language [12] but they detect that in some cases it was
necessary more theory or more examples to exaplin better the
idea but it takes more learning time.

C. Implementing a mini Robot

In this section we introduce as the goal of the course the
implementation of two mini robots called Otto and Kyo (See

(a) Blockly Games

(b) Code Combat

Fig. 1. Programing kyo with TinkerCad.

Fig. 3). In this part, we use all methodologies to explain
about electronic components, the mathematical fundamentals
and how they should to program the sensors.

To implement and programming these robots, their move-
ments and their sensors we use Block programming and
C language (with the concepts explained above) for this
part we use the online platform to simulate the component
programming (See Fig. 2). To programming Otto we use the
platform BitBloq [15] and to programming Kyo we use the
platform Tinkercad [16].

At this time, we measure how fast they understand basic
electronic concepts and components description and how fast
they can imagine a solution to programming using blocks. We
starts with script language then with metaphors and finally
with mind maps to get a solution for the problem of how
should we programming these mini robots.

But in thi part we focus on programming skills and how
they can translate their mind maps into a program (blocks or
programming language). We note that there is a improving in
programming speed after they understand the logic following
in the mind map previously drawn as you can see in Table III.

TABLE III
TABLE OF AVERAGE TIME TO DESCRIBE THE MINI ROBOT

IMPLEMENTATION.

Category Time to describe the problem Average Time to Solution
Kids 14-20 min 15 min

Tween 8-15 min 11 min
Teen 5-9 min 8 min

Adults 9-12 min 13.5 min

We need the average time to measure the learning curve and
interpret that as how much the adaptive behavior is increasing.

(a) Blocks

(b) Code

Fig. 2. Blocks Programming vs Programming Code.

IV. RESULTS

a) Measuring the learning curve: As definition of learn-
ing curve, we need to verify if the average time of learning
in previous works in kids [3] and teens [4] is correct in
all new concepts and for computer science we need to add
mathematic, physics and electronic components concepts. So
we teach and refor this topics with different methodologies,
using the formula below we approximate the average time to
learning and we compare with the real average time get from
the students.

We note that our average time in some cases is a bit less
than the approximate time and also is less than the average
time mentioned in previous works.

Yx = Kxlog2(b)

Where:
K: Number of hours used to understand the first unit (or

task).
Yx: Number of hours to understand the xth unit.
x: Number of the unit.
b: Percent of learning.
So, we have this tables with respective approximations. We

take the K value from the first part in script languages in Table
I we take b from [17] and [18] and x is equal to 4, because
is the 4th unit. See Table IV

TABLE IV
TABLE OF AVERAGE TIME TO DESCRIBE AND SOLVE.

How many time takes to learn a new concept with examples?
Category Real Time Calculate time Previous works Time

Kids 55-65 min 66.486 min 68.64 min
Tween 52-56 min 57.365 min 56.49 min
Teen 42-52 min 50.934 51.32 min

Adults 25-41 min 42.163 40.89 min

b) Following the adaptive behavior: As we show above,
the time to solve problems is decreasing and that is because
they understand more fast and they adapt himself to hear and
think in computer terms with computer concepts. The best way
to show this is with questionnaire before and after the course.
See Table V.

TABLE V
TABLE OF PREFERENCES FOR COMPUTER SCIENCE

What do you thing about computer science?
Category Before After

Kids Don’t know what it is Want play with robots in schools
Tween Just movies Want to design and learn

programming in schools
Teen Just for game develop Want to study informatic

or game develop
Adults Just Excel and Word Want to develop informatic projects

Using new software tools

c) Determining the best methodology per ages: To deter-
minate which is the best methodology per ages, we analyses
results above and take the questionaire as a personal preference
from students, we can say that for kids the best way and their
favourite method was mind maps, for tweens and teens their
favourite was script languages and for adults was real life
examples (metaphors). See Table VI.

TABLE VI
TABLE OF BEST METHODOLOGY PER AGE.

Which is the best methodology per age?
Category Age range methodology Occupation

Kids 6-9 mind maps primary school
Tween 10-12 script language primary-secondary school
Teen 13-17 metaphors secondary school

Adults 18 real life examples academies, institutes
and so on universities, workers

d) Objective of the course: We implement two different
mini robots following the preferences of our students to learn
about mathematics and physics concepts and mechanical parts.

(a) Kyo

(b) Otto

Fig. 3. Kyo and Otto design and components.

We note that as age increases, preference for programming
code increases and the same with which robot they select, kids
select the most tender robot between Otto and Kyo and teens
and adults select the more harder to implement See Table VII.

TABLE VII
TABLE OF PREFERENCES BETWEEN CODE VS BLOCKS.

Which do you prefer between code/blocks and Otto/Kyo robot?
Category Preference % Type Preference % robot

Kids 92 % Blocks 87% Otto
Tween 50 % Blocks/Code 60% Otto
Teen 76 % Code 55% Kyo

Adults 80 % Code 100% Kyo

V. CONCLUSIONS

This work introduces the different adaptive behavior with
different methodologies in the learning speed of ur group
divided in 100 kids, 100 tweens, 100 teens and 100 adults.

We note that tweens and teens have more ability to un-
derstand new concepts using games as metaphors. We note
that Adults have a strong learning speed to understand new
concepts based on past experience. From kids to juniors, they
present a fast learning speed, but they forget concepts in a
little period of time.

ACKNOWLEDGMENT

This work was supported by the project PCTI-2-P-039-
17 from INNOVATE-PERU, Ministerio de la Producción
(PRODUCE-PERU) and Universidad Nacional de Ingeniera
(UNI-PERU) for all the help and facilities given during all
this program.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest
regarding the publication of this article.

REFERENCES

[1] Felipe Moreno, Leonardo León, Juan Guizado, Michael Vera, A com-
parison of the adaptive behavior from kids to adults to learn Block
Programming, CEUR Workshop Proceedings, Vol. 2193.

[2] INEI, Population index, Lima, Peru, https://www.inei.gob.pe/
estadisticas/indice-tematico/population/, Last accessed 2 Feb 2018.

[3] Sajana Sigde, Technology and Learning Capacity of Children: A Positive
Impact of Technology in Early Childhood, Johnson & Wales University
- Providence.

[4] Amanda Lenhart, Paul Hitlin and Mary Madden, Teens and Technology,
PEW INTERNET & AMERICAN LIFE PROJECT.

[5] Jeanette M. Wing, Computational Thinking Viewpoint, Communications
of the ACM, volume 49,

[6] Smitha Sunil Kumaran Nair, Khadija Al Farei, A brain friendly tool
to facilitate research-teaching nexus: Mind maps, 8th International
Conference on Information and Communication Systems (ICICS), 2017.

[7] Shahla Gul, Muhammad Asif, Waqar Ahmad and Uzair Ahmad:
Teaching Programming: A Mind Map based Methodology to Improve
Learning Outcomes. In: International Conference on Information and
Communication Technologies (2017). number 3, 2006.

[8] Daniel Wendel, Paul Medlock-Walton, Thinking in blocks: Implications
of using abstract syntax trees as the underlying program model, IEEE
Blocks and Beyond Workshop (Blocks and Beyond), 2015.

[9] David Werntrop, Uri Wilensky, The challenges of studying blocks-
based programming environments, IEEE Blocks and Beyond Workshop
(Blocks and Beyond), 2015.

[10] D. Prez-Marn, R. Hijn-Neira, M. Martn-Lope : A Methodology Proposal
based on Metaphors to teach Programming to children, In: IEEE Revista
Iberoamericana de Tecnologias del Aprendizaje (2018).

[11] A. Robins ,J. Rountree, and N.Rountre: Learning and teaching program-
ming: A review and discussion, In: Computer Science Education (2003).

[12] D. Ginat: On novice loop boundaries and range conceptions, In: Com-
puter Science Education (2004).

[13] CodeCombat, https://codecombat.com/play. Last accessed 2 Jan 2018.
[14] Bockly Games, https://blockly-games.appspot.com/. Last accessed 18

Jan 2018.
[15] BitBloq https://bitbloq.bq.com/. Last accessed 20 Jan 2018.
[16] Tinkercad, https://www.tinkercad.com. Last accessed 28 Jan 2018.
[17] Roman H. T., Teaching Your Kids to Think and Solve Problems. IEEE

USA Books & eBooks, 2017.
[18] Josh Shipp, Raising Teens to Live with Technology Responsibly, IEEE

Technology and Society Magazine, Volume 36, Issue 4, pages 42-43,
2017.

