
Performing Deep Recurrent Double Q-Learning for
Atari Games

Felipe Moreno-Vera
Universidad Católica San Pablo

Arequipa, Perú
felipe.moreno@ucsp.edu.pe

Abstract—Currently, many applications in Machine Learning
are based on defining new models to extract more information
about data, In this case Deep Reinforcement Learning with the
most common application in video games like Atari, Mario, and
others causes an impact in how to computers can learning by
himself with only information called rewards obtained from any
action. There is a lot of algorithms modeled and implemented
based on Deep Recurrent Q-Learning proposed by DeepMind
used in AlphaZero and Go. In this document, we proposed
deep recurrent double Q-learning that is an improvement of
the algorithms Double Q-Learning algorithms and Recurrent
Networks like LSTM and DRQN.

Index Terms—Deep Reinforcement Learning, Double Q-
Learning, Recurrent Q-Learning, Reinforcement Learning, Atari
Games, DQN, DRQN, DDQN

I. INTRODUCTION

Currently, there is an increase in the number in of appli-
cations in Reinforcement Learning. One recently application
of Deep Reinforcement Learning (DRL) is self-driving cars
[1], [2], another one is in games like AlphaZero (Go, Chess,
etc) and video games like Mario, Top racer, Atari, etc. Deep
Reinforcement Learning is considered as a third model in Ma-
chine Learning (with Supervised Learning and Unsupervised
Learning) with a different learning model and architecture.

There are several methods of implementing these learning
processes, where Q-Learning is a prominent algorithm, the
Q value of a pair (state, action) contains the sum of all these
possible rewards. The problem is that this sum could be infinite
in case there is no terminal state to reach and, in addition, we
may not want to give the same weight to immediate rewards as
to future rewards, in which case use is made of what is called
an accumulated reinforcement with discount: future rewards
are multiplied by a factor γ [0, 1] so that the higher this
factor, the more influence future rewards have on the Q value
of the pair analyzed.

II. BACKGROUND

Sutton et al. [3], [4] define various models to describe
Reinforcement Learning and how to understand it. DeepMind
was the first to achieve this Deep Learning with AlphaZero
and Go game using Reinforcement Learning with Deep Q-
Learning (DQN) [5] and Deep Recurrent Q-Leaning (DRQN)
[6], follow up by OpenAI who recently surpassed professional
players in StarCraft 2 (Gramve created by Blizzard) and

978-1-7281-5666-8/19/$31.00 ©2019 IEEE

previously in Dota 2 developed by Valve. Chen et al. [7]
proposed a CNN based on DRQN using Recurrent Networks (a
little variance of DRQN model using LSTM, the first neural
network architecture that introduces the concept of memory
cell [8], on agents actions to extract more information from
frames.

A. Deep Q-Learning (DQN)

The first algorithm proposed by DeepMind was Deep Q-
Learning, based on Q-Learning with experience replay [5],
with this technique they save the last N experience tuples in
replay memory. This approach is in some respects limited since
the memory buffer does not differentiate important transitions
and always overwrites with recent transitions due to the finite
memory size N.

Fig. 1. Deep Mind DQN algorithm with experience replay [5].

B. Deep Double Q-Learning (DDQN)

Hado et al. [5] propose the idea of Double Q-learning is to
reduce overestimation by decomposing the max operation in
the target into action selection and action evaluation.

• DQN Model:

Yt = Rt+1 + γmaxQ(St+1; at; θt)

• DDQN Model:

Yt = Rt+1 + γQ(St+1; argmaxQ(St+1; at; θt); θ
1
t)

Where:
• • at represents the agent.
• • θt are the parameters of the network.

• • Q is the vector of action values.
• • Yt is the target updated resembles stochastic gradient

descent.
• • γ is the discount factor that trades off the importance

of immediate and later rewards.
• • St is the vector of states.
• • Rt+1 is the reward obtained after each action.

C. Deep Recurrent Q-Learning (DRQN)

Mathew et al. [6] have been shown to be capable of learning
human-level control policies on a variety of different Atari
2600 games. So they propose a DRQN algorithm which
convolves three times over a single-channel image of the
game screen. The resulting activation functions are processed
through time by an LSTM layer (see Fig.2.

Fig. 2. Deep Q-Learning with Recurrent Neural Networks model Deep
Recurrent Q-Learning model (DQRN) [6]

D. Deep Q-Learning with Recurrent Neural Networks
(DQRNN)

Chen et al. [7] say DQN is limited, so they try to improve
the behavior of the network using Recurrent networks (DRQN)
using LSTM in the networks to take better advantage of the
experience generated in each action (see Fig.3).

III. PROPOSED MODEL

We implement the CNN proposed by Chen et al. [7] with
some variations in the last layers and using ADAM error. The
first attempt was a simple CNN with 3 Conv 2D layers, with
the Q-Learning algorithm, we obtain a slow learning process
for easy games like SpaceInvaders or Pong and very low
accuracy in complicated games like Beam Rider or Enduro.
Then, we try modifying using Dense 512 and 128 networks at
the last layer with linear activation and relu, adding an LSTM
layer with activation tanh.

Fig. 3. Deep Q-Learning with Recurrent Neural Networks model (DQRN)
[7].

In table II we present our Hyperparameters using in our
models, we denote this list of hyperparameters as the better
set (in our case). We run models over an NVIDIA GeForce
GTX 950 with Memory 1954MiB using Tensorflow, Keras
and GYM (Atari library) for python. We implement DDQN,
DRQN, DQN and our proposed to combine DRQN with
Double Q-Learning [9] algorithm using LSTM.

Conv 2D, 32
(8x8), stride = 4

Conv 2D, 64
(4x4), stride = 2

Dense(512, relu)

Dense(actions, linear)

Conv 2D, 64
(3x3), stride = 1

Convolutional Network

Conv 2D, 32
(8x8), stride

= 4

Conv 2D, 64
(4x4), stride

= 2

Conv 2D, 64
(3x3), stride

= 1

LSTM(512,
tanh)

Dense(128,
relu)

Dense(actions, linear)

Recurrent Convolutional Network

Fig. 4. Convolutional Networks proposed in our models.

IV. EXPERIMENTS AND RESULTS

Our experiments are built over Atari Learning Environment
(ALE) [10] which serves us as an evaluation platform for our
algorithm in the games SpaceInvaders, Enduro, Beam Rider,
and Pong and allow us to compare with DQN (Double Q-
Learning), DDQN (Deep Double Q-Learning), and DRQN
(Deep Recurrent Q-Learning). After to run our algorithms
using 10M (10 million) episodes, we obtain results for each

model in each respective game. We get the best scores for the
4 games mentioned above (See Table I).

TABLE I
RESULTS SCORES OF SPACE INVADERS, ENDURO, PONG AND BEAM

RIDER.

Models and respective Scores
Model SpaceInvaders Enduro Pong Beam Rider
DQN 1450 1095 65 349

DRQN 1680 885 39 594
DDQN 2230 1283 44 167

DRDQN 2450 1698 74 876

We compare with Volodymyr et al. [11] Letter about best
scores form games obtained by DQN agents and professionals
gamers (humans) to verify correct behavior of learning pro-
cess, we measure accuracy based on Q-tables from the agent
and DL algorithm (Double Q-Learning) extracting information
from frames with the Convolutional Neural Networks (See Fig.
5, and Fig.6).

Fig. 5. DDQN Accuracy.

CONCLUSIONS

We present a model based on DRQN and Double Q-
Learning combined to get a better performance in some games,
using LSTM and CNN to analyze frames. We notice that each
method could be good for a set of specific Atari games and
other similar games but not for all. Some kind of sets of
games can be improved using different CNN and get more
information from the frames in each batch iteration. In this
work, we determine which one can be improved with the
techniques of Deep Recurrent Double Q-Learning and which
can be group based on which learning algorithm improve their
scores.

FUTURE WORKS

With these results, we notice that every game in atari has
a similar behavior to others different games, but because of
technical details and our equipment, we could not determine
which games haves similar behavior but we encourage to do it

and get all set of similar behaviors and verify which methods
should help to improve the learning process per each game.

ACKNOWLEDGMENT

This work was supported by grant 234-2015-FONDECYT
(Master Program) from CienciActiva of the National Coun-
cil for Science,Technology and Technological Innovation
(CONCYTEC-PERU).

Fig. 6. DRDQN Accuracy.

REFERENCES

[1] Len-Vera, L., & Moreno-Vera, F. (2018, September). Car Monitoring
System in Apartments Garages by Small Autonomous Car Using Deep
Learning. In Annual International Symposium on Information Manage-
ment and Big Data (pp. 174-181). Springer, Cham.

[2] Len-Vera, L., & Moreno-Vera, F. (2018, July). Sistema de Monitoreo
de Autos por Mini-Robot inteligente utilizando Tcnicas de Visin Com-
putacional en Garaje Subterrneo. IEEE Latin American and Caribbean
Consortium of Engineering Institutions. LACCEI.

[3] Richard S. Sutton, ”Reinforcement Learning Architectures”.
[4] Richard Sutton and Andrew Barto. Reinforcement Learning: An Intro-

duction. MIT Press, 1998.
[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Daan Wierstra,

Alex Graves, Ioannis Antonoglou, Martin Riedmiller, ”Playing Atari
with Deep Reinforcement Learning”, In NIPS Deep Learning Workshop
2013.

[6] Matthew Hausknecht and Peter Stone, ”Deep Recurrent Q-Learning for
Partially Observable MDPs”, In AAAI Fall Symposium Series 2015.

[7] Clare Chen, Vincent Ying, Dillon Laird, ”Deep Q-Learning with Recur-
rent Neural Networks”.

[8] Hochreiter and Schmidhuber. Long short-term memory. Neural Comput.
9(8):1735-1780.

[9] Hado van Hasselt, Arthur Guez and David Silver, ”Deep Reinforcement
Learning with Double Q-learning”.

[10] M. Bellemare, Y. Naddaf, J. Veness and M. Bowling, The arcade learning
enviroment. An evaluation platform for general agents. In Journal of
Artificial Intelligence Research, 47:253-279, 2013

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller,
Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg & Demis Hassabis, ”Human-level control through
deep reinforcement learning”.

TABLE II
HYPERPARAMETERS USED IN MODELS

List of Hyperparameters
Iterations 10 000000 number of batch iterations to the learning process
miniBatch size 32 number of experiences for SGD update
Memory buffer size 900000 SGD update are sampled from this number of most recent frames
Learning Rate 0.00025 learning rate used by RMS Propagation
Training Frequency 4 Repeat each action selected by the agent this many times
Y Update Frequency 40000 number of parameter updates after which the target network updates
Update Frequency 10000 number of actions by agent between successive SGD updates
Replay start size 50000 The number of Replay Memory in experience
Exploration max 1.0 Max value in exploration
Exploration min 0.1 Min value in exploration
Exploration Steps 850000 The number of frames over which the initial value of e reaches final value
Discount Factor 0.99 Discount factor γ used in the Q-learning update

