Comparison of the learning curve and adaptive behavior from kids to adults using computational thinking with Block-Programming to Technology Enhanced Learning

Felipe A. Moreno-Vera, L. León-Vera, J. Moreno-Motta, J. Guizado-Vasquez, and M. Vera-Panez

UNIVERSIDAD VICERRECTORADO NACIONAL DE DE INGENIERÍA INVESTIGACIÓN

Content

- Introduction
- Methodology
- Experimental Results
- Conclusion

PRESENTATION OUTLINE 2

Introduction

Motivation

Enhance the speed learning using block programming and websites

Context

We identify the necessity of implement a program to easy use and fast learning for kids and adults

Methodology

Block Programing

move forward move forward	
turn left 5 T move forward	
turn right over move forward	ſ
Congratulations!	
You solved this level with 5 lines of Ja	va
<pre>moveForward(); turnLeft(); moveForward(); turnRight(); moveForward();</pre>	

Code Combat

Block vs Code Programming

Text		•	+		*	1 (Arduino Uno R3)	•
14	incep.//www.aruu	1110.007		1101/	ione4		
15	•/						
10	int non = 0:						
10	Inc pos - o,						
10	void setun()						
20	secup()						
21	ninMode(8 OUTP	UT) ·					
22	ninMode(6, OUTP	UTI					
23	pinMode(7, OUTP	UT):					
24	3						
25	•						
26	void loop()						
27	(
28	// turn off ton	e funct	ion for	pin 8	3:		
29	noTone(8);						
30	// play a note	on pin	6 for 2	80 ms:	÷		
31	tone(6, 880, 20	0); //	play to	ne 69	(A5 =	880 Hz)	
32	delay(200); //	Wait fo	or 200 m	illise	econd(s	5)	
33	// turn off ton	e funct	ion for	pin 6	5:		
34	noTone(6);						
35	// play a note	on pin	7 for 5	00 ms:			
36	tone(7, 988, 50	0); //	play to	ne 71	(85 =	988 Hz)	
37	delay(500); //	Walt fo	or 500 m	111156	econd(s	5)	
38	// turn off ton	e funct	ion for	pin 7	7:		
39	notone(7);	142 0 230					
40	// play a note	on pin	8 for 3	00 ms:			
41	tone(8, 1047, 3	00); //	play t	one 72	(06 =	1047 HZ)	
42	deray(300); //	walt fo	or 300 m	111150	econd (s	.)	
43	}						

METHODOLOGY 8

Kyo vs Otto

Experimental results

Solution Proposal Average Time

TABLE I

TABLE OF AVERAGE TIME TO THINK ABOUT THE SITUATION AND SOLVE.

Category	Situations	time thinking range		
Kids	How to go to the bathroom	18-34 min		
Tween	How turn on a computer	17-25 min		
Teen	How to use pythagoras theorem	15-20 min		
Adults	how to develop a software project	10-15 min		

Loop problem Average Time

TABLE II

TABLE OF AVERAGE TIME TO DESCRIBE AND SOLVE THE LOOP PROBLEM.

Category	time thinking the problem	time to solve the problem
Kids	20-30 min	20-30 min
Tween	14-21 min	15-20 min
Teen	11-16 min	10-15 min
Adults	6-12 min	9-17 min

Mini-Robot Average Time

TABLE III TABLE OF AVERAGE TIME TO DESCRIBE THE MINI ROBOT IMPLEMENTATION.

Category	Time to describe the problem	Average Time to Solution
Kids	14-20 min	15 min
Tween	8-15 min	11 min
Teen	5-9 min	8 min
Adults	9-12 min	13.5 min

Describe Problem Average Time

TABLE IV

TABLE OF AVERAGE TIME TO DESCRIBE AND SOLVE.

How many time takes to learn a new concept with examples?				
Category	Real Time	Calculate time	Previous works Time	
Kids	55-65 min	66.486 min	68.64 min	
Tween	52-56 min	57.365 min	56.49 min	
Teen	42-52 min	50.934	51.32 min	
Adults	25-41 min	42.163	40.89 min	

Preference about Computer Science

TABLE V TABLE OF PREFERENCES FOR COMPUTER SCIENCE

What do you thing about computer science?			
Category	Before	After	
Kids	Don't know what it is	Want play with robots in schools	
Tween	Just movies	Want to design and learn programming in schools	
Teen	Just for game develop	Want to study informatic or game develop	
Adults	Just Excel and Word	Want to develop informatic projects Using new software tools	

Best Methodology

TABLE VI TABLE OF BEST METHODOLOGY PER AGE.

Which is the best methodology per age?			
Category	Age range	methodology	Occupation
Kids	6-9	mind maps	primary school
Tween	10-12	script language	primary-secondary school
Teen	13-17	metaphors	secondary school
Adults	18 and so on	real life examples	academies, institutes universities, workers

Code vs Block Preference

TABLE VII

TABLE OF PREFERENCES BETWEEN CODE VS BLOCKS.

Which do you prefer between code/blocks and Otto/Kyo robot?				
Category	Preference %	Туре	Preference %	robot
Kids	92 %	Blocks	87%	Otto
Tween	50 %	Blocks/Code	60%	Otto
Teen	76 %	Code	55%	Куо
Adults	80 %	Code	100%	Куо

Conclusions

Conclusions

- This work introduces the different adaptive behavior with different methodologies in the learning speed of students divided in 100 kids, 100 tweens, 100 teens, and 100 adults.
- We note that tweens and teens have more ability to understand new concepts using games as metaphors.
- We note that Adults have a strong learning speed to understand new concepts based on past experience.
- From kids to juniors, they present a fast learning speed, but they forget concepts in a little period of time.

Conclusions 19

THANKS! Any Questions?