Quantifying Urban Safety Perception on Street View Images

Felipe A. Moreno-Vera, Bahram Lavi, Jorge Poco

Motivation

Which one looks safer?

Bangú (RJ)

Place Pulse

Which place looks livelier?

For this question: 362,708 clicks collected

Goal: 500,000 clicks

http://pulse.media.mit.edu/

* Comparisons were made using two random images from random cities.

Place Pulse Dataset

Place Pulse 1.0:

- 73 806 Comparisons, 4 136 images
- 2 Countries (US y Austria)
- 4 cities: New York City, Boston, Linz and Salzburg
- 3 categories: Safe, Wealth and Unique

* **Remember:** We will focus in **Place Pulse 2.0** only.

Place Pulse 2.0:

- 1 223 649 Comparisons, 111 390 images
- 32 countries
- 56 cities
- 6 categories: Safe, Wealth, Depress, Beautiful, Boring, and Lively

Data Pre-processing

Dataset sample: Set of comparisons*

left_id	right_id	winner	left_lat	left_long	right_lat	right_long	category
513d7e23fdc9f	513d7ac3fdc9f	equal	40.744156	-73.93557	-33.52638	-70.591309	depressing
513f320cfdc9f	513cc3acfdc9f	left	52.551685	13.416548	29.76381	-95.394621	safety
513e5dc3fdc9f	5140d960fdc9f	right	48.878382	2.403116	53.32932	-6.231007	lively

* **Remember:** Comparisons were made using two random images from random cities.

Pre-processing Comparisons

Perceptual Scores Approach

Salesse et. al, "The Collaborative Image of The City: Mapping the Inequality of Urban Perception", 2013

$$W_i = \frac{w_i}{w_i + d_i + l_i}$$

$$L_i = \frac{l_i}{w_i + d_i + l_i}$$

$$q_{i,k} = \frac{10}{3} (W_{i,k} + \frac{1}{n_{i,k}^w} (\sum_{j_1} W_{j_1,k}) - \frac{1}{n_{i,k}^l} (\sum_{j_2} L_{j_2,k}) + 1)$$

*Nassar et al, "The evaluative image of the city", 1990

Rank Images Approach

Dubey et. al, "Deep Learning the City : Quantifying Urban Perception At A Global Scale", 2016

$$\mu_{x} \longleftarrow \mu_{x} + \frac{\sigma_{x}^{2}}{c} \cdot f\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)$$

$$\mu_{y} \longleftarrow \mu_{y} - \frac{\sigma_{y}^{2}}{c} \cdot f\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)$$

$$\sigma_{x}^{2} \longleftarrow \sigma_{x}^{2} \cdot \left[1 - \frac{\sigma_{x}^{2}}{c} \cdot g\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)\right]$$

$$\sigma_{y}^{2} \longleftarrow \sigma_{y}^{2} \cdot \left[1 - \frac{\sigma_{y}^{2}}{c} \cdot g\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)\right]$$

$$c^{2} = 2\beta^{2} + \sigma_{x}^{2} + \sigma_{y}^{2}$$

$$\pi$$

$$q_{i,k} = \frac{10}{c_{max,k}}(c_{i,k})$$

**Minka et al, "TrueSkill 2: An improved Bayesian skill rating system", 2018

Perceptual Score Approach

$$W_i = \frac{w_i}{w_i + d_i + l_i} \qquad \qquad L_i = \frac{l_i}{w_i + d_i + l_i}$$

$$q_{i,k} = \frac{10}{3} (W_i + \frac{1}{w_i} (\sum_{k_1=1}^{w_i} V_w(k_1)) - \frac{1}{l_i} (\sum_{k_2=1}^{l_i} V_l(k_2)) + 1)$$

Salesse et. al, "The Collaborative Image of The City: Mapping the Inequality of Urban Perception", 2013

Processed sample: Images from Rio de Janeiro - Place Pulse 2.0

Image	ID	Safety	Lively	Wealthy	Beauty	Boring	Depressive
	513d7e23fdc9f	7.42	8.58	6.5	7.3	2.64	1.23
	513f320cfdc9f	6.07	4.97	7.13	8.61	1.67	0.86

* Note: We perform the calculation in all categories, but we will focus in safety only.

Dataset Statistics: summary

Place Pulse 1.0								
City	# images	safe mean	wealth mean	unique mean				
Linz	650	4.85	5.01	4.83				
Boston	1237	4.93	4.97	4.76				
New York	1705	4.47	4.31	4.46				
Salzburg	544	4.75	4.89	5.04				
Total	4136		-	-				

]	Place Pulse 2	2.0			Place Pulse 2	2.0	
Continent	#countries	#cities	#images	Category	# comparisons	# images	mean
Europe	19	22	38,747	Safety	368,926	111,389	5.188
North America	3	17	37504	Lively	267,292	111,348	5.085
South America	2	5	12,524	Beautiful	175,361	110,766	4.920
Asia	5	7	11,417	Wealthy	152,241	107,795	4.890
Oceania	1	2	6,097	Depressing	132,467	105,495	4.816
Africa	2	3	5,101	Boring	127,362	106,363	4.810
Total	32	56	111,390	Total	1,223,649		

Exploratory Analysis

Number of images per continent

Number of comparisons

* Remember: Comparisons were made using two random images from two random cities.

Geographical city distribution: Cities included in Place Pulse 2.0

* Note: Same color means same country.

Number of images per geographical level

Place Pulse 2.0										
Category/Level	City	Country	Continent	Global						
safety	20,143	45,640	85,890	111,390						
lively	14,803	38,216	79,788	111,349						
Beautiful	9,410	28,811	66,792	110,767						
Wealthy	7,642	24,326	57,780	107,796						
Depressing	6,556	21,171	52,504	105,496						
Boring	6,148	20,931	52,031	106,364						

Dataset Limitations

Individual perception

Unsafe perception

Safe perception

New York*

*https://www.nytimes.com/2019/08/08/nyregion/newyorktoday/times-square-panic-safety.html#:~:text=Actually%2C%20Times%20Square%20is%20one,23%2C000%20major%20crimes%20were%20recorded.

**<u>https://www.japantimes.co.jp/news/2019/10/04/national/media-national/rip-off-bars-japan-tourist-boom/</u>

Lack of samples: Identify city characteristics individually

Place Pulse 1.0 < 4 140 Images & Place Pulse 2.0 < 112 000 Images

Imbalance of samples: e.g. Safety category perception

* Note: Some cities have more "not safe" sample than safe samples. E.g. Brazilian cities.

Imbalance of samples: e.g. Chicago vs Rio de Janeiro

Imbalance of samples per category in Chicago and Rio de Janeiro

*Positive Samples: safe, beautiful, wealthy, lively, not depressing, not boring. *Negative Samples: not safe, not beautiful, not wealthy, not lively, depressing, boring.

Non-Reliable Score Distribution

Dataset Images: Faulty/Blank/None samples

Dataset Images: Different Point of View of Sample Images

Perception changes over time

ID: 3936

ID:

2019

Different Point of View

Angle: 90

Panoramic

Experiments & Results

- Accuracy What percent of the data were predicted correct?
- **Precision** What percent of your predictions were correct?
- **Recall** What percent of the positive cases did you catch?
- **F1 score** What percent of positive predictions were correct?

$$Accuracy = \frac{T_P + T_N}{T_P + T_N + F_P + F_N}$$

$$Precision = \frac{T_P}{T_P + F_P}$$

$$Recall = \frac{T_P}{T_P + F_N}$$

$$F1_{score} = 2 \frac{Precision * Recall}{Precision + Recall}$$

Data Split: K-fold cross validation

83				All data		
ſ			Fraining dat	а		Test data
-				-		
plit 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
olit 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
olit 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Finding
olit 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Parameters
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	

* All results presented are corresponding to test data

Transfer-Learning models results

		auc		accu	iracy	f1 sc	ore
Model	Method	train	eval	train	eval	entrena	eval
	Linear SVC	61.62	59.10	68.10	66.42	53.63	50.80
ResNet50	Logistic	60.04	59.15	67.25	66.37	51.47	49.70
	Ridge Classifier	62.11	58.38	68.36	66.08	54.59	51.00
	RBF SVC	45.36	44.07	53.46	53.57	44.99	44.98

	LinearSVC	55.29	53.25	64.43	63.33	41.66	39.69
X ception	Logistic Regression	53.48	52.75	63.56	63.14	36.72	35.87
	Ridge Classifier	57.23	52.22	65.22	63.04	45.63	42.11
	RBF SVC	45.575	44.99	49.12	49.12	55.01	55.05

* Results of testing using all dataset.

Questions?