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Graffiti and Urbanism

% Urban elements (city’s appearance) can affect the lives of inhabitants.

% Gradffitiis an essential and inseparable social element:
o  toexpressculture, or

o  tomanifest the vision of a community of people.

* Graffiti formerly interpreted in the Broken Window Theory as a social disordering element.

(this theory plays a significant role in getting police attention to social elements and other offenses).




Motivation
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> Graffiti Incidence (as an spatial city’s element), and
> Crime Occurrences (as social offences).

Lack of sufficient Graffiti dataset (only STORM with 1K images). -
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<& No robust model to detect and localize Graffiti.
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Example images and boundary boxes from STORM
dataset



Graffiti Dataset Collection-and-Annotation

Graffitiimages collected via Flickr.com

(through an APl with hashtag of “graffiti”).

The initial pool was 15K images and we kept only ~9K.

The boundary box annotation procedure performed manually:

yielded ~17K Graffiti instances.

The dataset was divided as 80% to train and 20% to test.
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Boundary box
Set Images | Single-boundary | Multi-boundary Total
Train 6,956 4,115 9,704 13,819
Test 1,137 1,004 2,008 3,012
Total 8,693 5,119 11,712 16,831




Image and Annotation Examples

(a) Graffiti Image Samples (b) Annotated Boundary Box



Faster R-CNN" Graffiti Detection Model

-> Treated the detector as a binary problem
-> Backbone = ResNet50
[pretrained weights on MSCOCO]

N region proposals
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=>  Imagesize = 224x224x3 :
=  Batchsizeof 16 s
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* Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: towards real-time object detection with region proposal networks. |IEEE transactions on pattern analysis and machine intelligence, 2016.



Performance Evaluation and Comparison

-> Mean Average Precision (mAP) over different criteria on IOU.
->  Performance evaluation of the detector with STORM dataset.

-> Comparing the results with a detector developed by Alzate et al*.

mAP
Detector dataset @[IOU=0.25] | @[IOU=050] | @[IOU=0.75]
STORM - 3330 -
(Alzate etal., 2021) | oropM-Extended - 69.14 ;
e STORM 83.05 71.60 5153
‘ 17K-Graffiti 89.13 85.20 62.64

* Alzate, J. R., Tabares, M. S., and Vallejo, Graffiti and government in smart cities: a deep learning approach applied to medellin city, colombia. In International Conference on Data Science, E-learning and Information Systems 2021.



Graffiti and Crime Data in Sao Paulo

% Normalization Factors:
> Graffiti: frequency of GSV images per district

> Crime: population size per district

GSV Crime data
[Year 2017] [Year 2017]
Data Type
Images Detected Graffiti Vehicle Pedestrian
Images
Frequency 275,349 4,268 31,800 103,945
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(Top): geographical distributions of downloaded GSV images,

and detected graffiti images; (Bottom): crime against vehicle,

and crime against pedestrian in 96 districts in Sdo Paulo.



Examples of Graffiti Incidence in Sao Paulo City

True
Positive

False
Positive




Data Correlation

%  Wereport r value computed by Pearson Correlation.
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Conclusion

*  Weorganized the 17K-Graffiti dataset and treated it as an spatial city’s element.
% Arobust Graffiti detection model was developed and performed on the vast number of images from GSV in
Sao Paulo; aiming to detect Graffiti incidence.

%  Westudied the data correlation between Graffiti and two types of Crime:

o Vehicle: No apparent association,

o Pedestrian: a relatively high correlation across neighborhoods.

%  Hypothesized the causes of such effects, mainly related to the factors that favor graffiti production.
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Future work

Influence of different Graffiti types with crime data
Other imagery clues (e.g., trash, garbage bag, container)

More infrastructure data such as: health rate, education, tree, bus stop, street light, school, bar
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Different Crime types and its records over different time periods
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Thanks!

For more info, find us through:

> Qur Lab. website: www.visualdslab.com

> Our Github repository: https://github.com/visual-ds
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