17K-Graffiti: Spatial and Crime Data Assessments in São Paulo City

<u>Bahram Lavi</u>, Eric K. Tokuda, Felipe Moreno-Vera, Luis Gustavo Nonato, Claudio T. Silva, and Jorge Poco

> Visual Data Science Lab., School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, RJ, Brazil

> > Email: bahram.lavi@fgv.br

Graffiti and Urbanism

- ★ Urban elements (city's appearance) can affect the lives of inhabitants.
- ★ *Graffiti* is an essential and inseparable social element:
 - to express culture, or
 - to manifest the vision of a community of people.
- ★ Graffiti formerly interpreted in the Broken Window Theory as a social disordering element.
 (this theory plays a significant role in getting police attention to social elements and other offenses).

Motivation

- The ultimate goal is to seek relations between:
 - > <u>Graffiti Incidence</u> (as an spatial city's element), and
 - > <u>Crime Occurrences</u> (as social offences).
- Lack of sufficient Graffiti dataset (only <u>STORM</u> with <u>1K</u> images).
- No robust model to detect and localize Graffiti.

Example images and boundary boxes from <u>STORM</u> dataset

Graffiti Dataset Collection-and-Annotation

- Graffiti images collected via Flickr.com
 (through an API with hashtag of "graffiti").
- ✤ The initial pool was <u>15K</u> images and we kept only ~<u>9K</u>.
- The boundary box annotation procedure performed manually:
 yielded ~<u>17K</u> Graffiti instances.
- The dataset was divided as <u>80%</u> to train and <u>20%</u> to test.

		Boundary box		
Set	Images	Single-boundary	Multi-boundary	Total
Train	6,956	4,115	9,704	13,819
Test	1,737	1,004	2,008	3,012
Total	8,693	5,119	11,712	16,831

Image and Annotation Examples

(b) Annotated Boundary Box

Faster R-CNN* Graffiti Detection Model

- → Treated the detector as a binary problem
- → Backbone = ResNet50

[pretrained weights on MSCOCO]

- \rightarrow Image size = 224x224x3
- → Batch size of 16
- \rightarrow Iterated for 27k

Performance Evaluation and Comparison

- → Mean Average Precision (mAP) over different criteria on IOU.
- → Performance evaluation of the detector with STORM dataset.
- \rightarrow Comparing the results with a detector developed by Alzate et al^{*}.

		mAP		
Detector	dataset	@[IOU=0.25]	@[IOU=0.50]	@[IOU=0.75]
(Alzate et al. 2021)	STORM	-	58.30	-
(Alzaie et al., 2021)	STORM-Extended	-	69.14	-
Ours	STORM	83.05	71.60	51.53
Ours	17K-Graffiti	89.13	85.20	62.64

* Alzate, J. R., Tabares, M. S., and Vallejo, Graffiti and government in smart cities: a deep learning approach applied to medellin city, colombia. In International Conference on Data Science, E-learning and Information Systems 2021.

Graffiti and Crime Data in São Paulo

- Normalization Factors:
 - ➢ Graffiti: frequency of GSV images per district
 - > Crime: population size per district

Data Type	GSV [Year 2017]		Crime data [Year 2017]	
	Images	Detected Graffiti Images	Vehicle	Pedestrian
Frequency	275,349	4,268	31,800	103,945

GSVI

Detected Graffiti

Crime against vehicle

Crime against pedestrian

(Top): geographical distributions of downloaded GSV images, and detected graffiti images; **(Bottom):** crime against vehicle, and crime against pedestrian in 96 districts in São Paulo.

Examples of Graffiti Incidence in São Paulo City

Data Correlation

We report **r** value computed by Pearson Correlation.

Spatial infrastructure	Crime	r value
Croffiti vo	Vehicle	0.06
Grannu vs.	Pedestrian	0.44

Conclusion

- ★ We organized the 17K-Graffiti dataset and treated it as an spatial city's element.
- ★ A robust Graffiti detection model was developed and performed on the vast number of images from GSV in São Paulo; aiming to detect Graffiti incidence.
- ★ We studied the data correlation between <u>Graffiti</u> and two types of <u>Crime</u>:
 - Vehicle: No apparent association,
 - Pedestrian: a relatively high correlation across neighborhoods.
- ★ Hypothesized the causes of such effects, mainly related to the factors that favor graffiti production.

Future work

- □ Influence of different Graffiti types with crime data
- Other imagery clues (e.g., trash, garbage bag, container)
- Description More infrastructure data such as: health rate, education, tree, bus stop, street light, school, bar
- Different Crime types and its records over different time periods

Thanks!

For more info, find us through:

- > Our Lab. website: <u>www.visualdslab.com</u>
- > Our Github repository: <u>https://github.com/visual-ds</u>