WSAM: Visual Explanations from Style Augmentation as Adversarial Attacker

Felipe Moreno-Vera, Edgar Medina, and Jorge Poco

Content

- Motivation
- Methodology
 - Styler Network
 - Style Activation Map
 - Weighted Style Activation Map
- Experiments
 - Train-test with Style Augmentation
 - SAM
 - \circ WSAM
 - WSAM variance
- Conclusions
 - Main Contributions

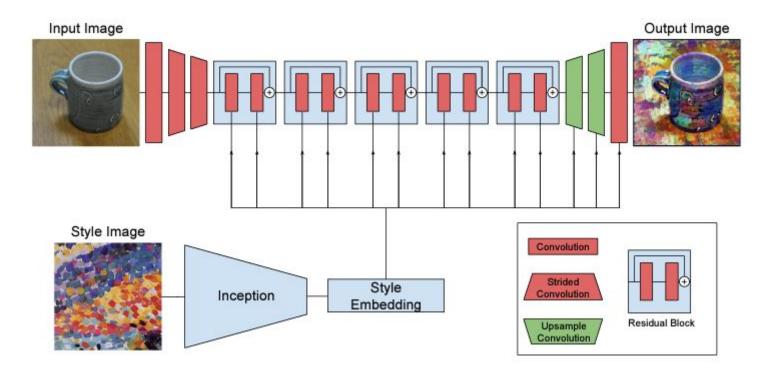
Motivation

Data Augmentation: Style Augmentation

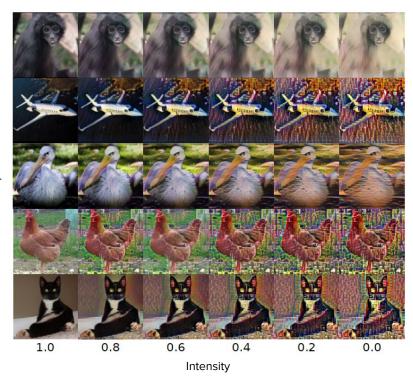
• Traditional methods on images are cutout, flip, crop, rotation, scaling, etc.

- ~80K styles
- Different values of intensity
- VGG-based CNN styler
- Shape is preserved but the style, including texture, color and contrast are randomized

Style Augmentation: by Style transfer



Style Augmentation



Styled images visualization using T-sne

The less intensity, the more style

Limitations

• Not all styles provide good information.

• CNN-based Networks fall into adversarial attack tests.

• Some styles can distort input samples.

Proposal

• When Style Augmentation performs well as a data augmentation technique?

• Can we explain the impact of the stylization technique?

• Can we measure the impact of the stylization technique?

Methodology

Styler Network

$$\phi_c = \phi_1(VGG(\overline{c}_j))$$

$$\phi_s = \phi_2(VGG(\overline{s}_i))$$

we add some noise $\hat{z}_i \sim \bar{z}_i + \mathcal{N}(\mu_i, \sigma_i^2)$

*
$$T = \phi_c \phi_c^T \alpha \phi_s \phi_s^T$$

- $* o_i = Tc_i$
 - $\bar{s_i}$: zero-mean vectors styles feature map
 - $\bar{c_j}$: zero-mean vectors of image sample
 - O_i : styled image output
 - ϕ_1 : image to vector
 - $\dot{\phi_2}$: Styler Net
 - $\dot{\alpha}$: hyper-parameter of style

$$T = \phi_c \phi_c^T (\alpha \phi_c \phi_c^T + (1 - \alpha) \hat{z}_i)$$

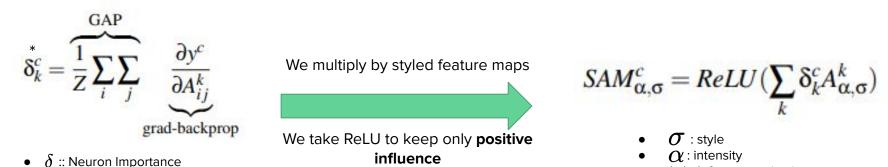
$$p_i = U(T \ C(c_j)) + (\alpha) \mu_{c_i} + (1 - \alpha) \mu_{z_i}$$

- \overline{z}_i : precomputed **s**tyle vectors
- $U(\dot{\cdot})$: Linear Encoder Net^{**}
- C(.): Linear Decoder Net**
- μ_{c_i} : mean of images vectors
- μ_{z_i} : mean of embedded vectors

*Style Augmentation: Data Augmentation via Style Randomization, Jackson et al., 2019.

**Learning Linear Transformations for Fast Image and Video Style Transfer, Li et al., 2020.

Style Activation Maps (SAM)



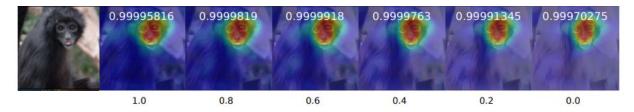
- $A_{i,i}$: feature map
- **Strong against adversarial attacks

influence

 $A_{\alpha,\sigma}$: feature styled map

c: class

k: k-th feature activation map



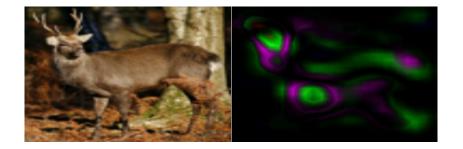
* Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, Selvaraju et al., 2016

** Sanity Checks for Saliency Maps, Adebayo et al., 2021

Weight Style Activation Maps (WSAM)

 $WSAM^{c} = \frac{1}{\Omega} \sum_{\alpha} \sum_{\sigma} y^{c}_{\alpha,\sigma} \times SAM^{c}_{\alpha,\sigma}$

- Ω : styles x intensities
- y: prediction probability
- SAM: Styled Activation Map



We saw the regions where all styles combined generate a high variance in sample

WSAM: Variance

$$WSAM_{variance}^{c} = \frac{1}{Z \times m} \sum_{i}^{m} (WSAM_{i}^{c} - y_{i}^{c} \times I_{i}^{c})^{2}$$

- i: i-th sample ۲
- m: number of samples •
- c: class •
- Z: image size (width x height) •
- I_i^c : image with no style (alpha=1.0) $WSAM_i^c$: WSAM calculate for that sample i. y_i^c : probability of prediction

We calculate the total variance of all styles and intensities for all samples per each category.

Results

Evaluations: Performed on STL-10

Comparison between applying style augmentation
to previous works

Network	Extra	Trad	Style	Acc
SWWAE	~	~		74.33
Exempla Conv	~	~		75.40
IIC	~	~		88.80
Baseline		~		75.67
Ensemble		~		77.62
STADA*		~	1	75.31
InceptionV3-299*		~	1	80.80
Xception-96*		~	\checkmark	82.67
Xception-128*		~	1	85.11

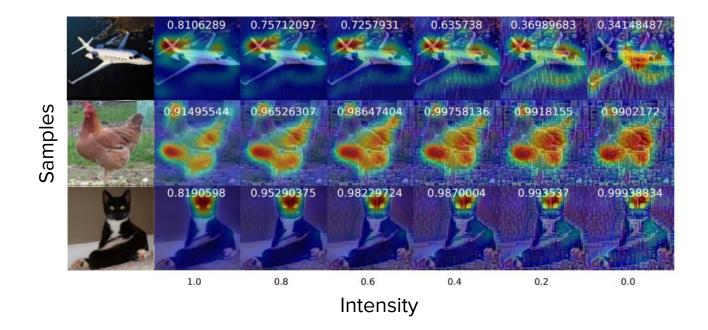
"Extra" column means additional data used in training.

WideResNet-101 has a 32x32 input shape.

Comparison between traditional and style augmentation with different input shapes

Network	Extra	Trad	Style	Acc
				73.37
Xception-256*		~		86.19
			~	74.89
		~	~	86.85
InceptionV4-299*				79.17
		~		86.49
			~	80.52
		~	~	88.18
WideResNet-96* (WRN)				77.28
		~		87.26
			~	83.58
		~	~	88.83
WideResNet-101* (WRN)				87.83
		~		88.23
			~	92.23
		~	~	94.67

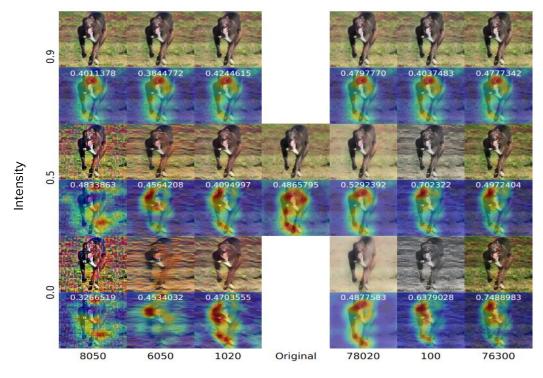
SAM: Impact of stylizing



The same style is applied to different samples.

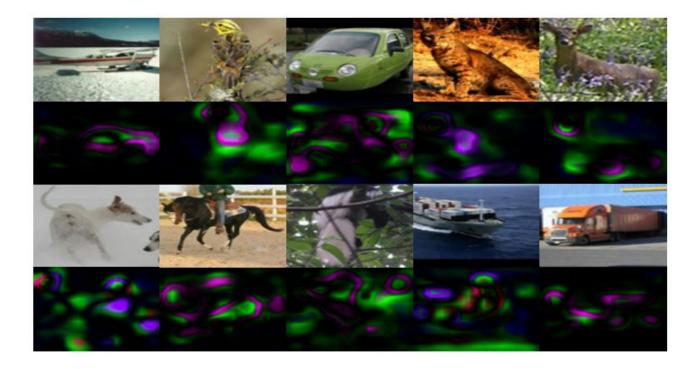
We note that for some categories, coarse styles make a prediction difficult.

SAM: Impact of stylizing in predictions



Style number

WSAM: Impact of styling as "noise" in samples



The more intensity used in stylization, the more noise (variance) is added.

WSAM: Measuring impact of styling in STL-10

WSAM _{variance}	Category	WSAM _{variance}	Category
airplane	0.107	horse	0.269
truck	0.129	bird	0.316
deer	0.175	dog	0.338
cat	0.193	monkey	0.380
car	0.228	ship	0.456

WSAM variance calculated for each category in STL-10 dataset

We note that high variance corresponds to the **ship** category, which has more PoV in samples.

Conclusions

- We found that the **best alpha** values are between 0.3 and 0.8
- Style Augmentation works better in lower image quality.
- Style Activation Maps (SAM): highlight impact of stylization in predictions
- Weighted Style Activation Maps (WSAM): remark the total influence of styles in samples
- **WSAM variance**: measure the impact of stylized samples
- Code: <u>https://github.com/fmorenovr/WSAM_Style/</u>

