Deep Learning Techniques in Urban Security Perception Analysis

Felipe A. Moreno

Advisor: Prof. Jorge Poco

About me

B.Sc. Felipe A. Moreno <u>www.fmorenovr.com</u>

Content

- Introduction
- Place Pulse
- Methodology
 - Data Pre-processing
 - Exploratory Analysis
 - Dataset Limitations
- Urban Security Perception
 - Data Preparation
 - Models Configurations
 - Experiments & Results
- Conclusions
 - Main Contributions
 - Publications

Introduction

Which one looks safer?

City Center (RJ)

Bangú (RJ)

Motivation

By understanding how people perceive and experience cities, we can create more inclusive, attractive, and functional urban solutions that meet the needs and aspirations of their diverse populations.

Context

Urban perception is shaped by a complex interplay of factors. Such as physical design, architectural styles, street layouts, landmarks, and the quality of infrastructure all contribute to the visual characteristics that define a city's identity.

Place Pulse

Place Pulse

Which place looks livelier?

-

Place Pulse

8

http://pulse.media.mit.edu/

* Comparisons were made using two random images from random cities.

Place Pulse 1.0

- Release date: 2013
- 73 806 Comparisons
- 4 136 images
- 2 Countries
- 4 cities
- 3 categories

Place Pulse 2.0

- Release date: 2016
- 1223 649 Comparisons
- 111 390 images
- 32 countries
- 56 cities
- 6 categories

Methodology

Pipeline

UCSP | RICS | CONCYTEC

Methodology **11**

Data Pre-processing

Data Samples

left-id	right-id	winner	left-lat	left <mark>-</mark> long	right-lat	right-long	category
513d7e23fdc9f	513d7ac3fdc9f	equal	40.744156	-73.93557	-33.52638	-70.591309	depressing
513f320cfdc9f	513cc3acfdc9f	left	52.551685	13.416548	29. <mark>76381</mark>	-95.39 <mark>46</mark> 21	safety
513e5dc3fdc9f	5140d960fdc9f	right	48.878382	2.403116	53.32932	-6.23 <mark>1007</mark>	lively

Perceptual Scores

Rank Scores

$$W_i = \frac{w_i}{w_i + d_i + l_i}$$
$$L_i = \frac{l_i}{w_i + d_i + l_i}$$

$$q_{i,k} = \frac{10}{3} (W_{i,k} + \frac{1}{n_{i,k}^w} (\sum_{j_1} W_{j_1,k}) - \frac{1}{n_{i,k}^l} (\sum_{j_2} L_{j_2,k}) + 1)$$

$$\mu_{x} \longleftarrow \mu_{x} + \frac{\sigma_{x}^{2}}{c} \cdot f\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)$$

$$\mu_{y} \longleftarrow \mu_{y} - \frac{\sigma_{y}^{2}}{c} \cdot f\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)$$

$$\sigma_{x}^{2} \longleftarrow \sigma_{x}^{2} \cdot \left[1 - \frac{\sigma_{x}^{2}}{c} \cdot g\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)\right]$$

$$\sigma_{y}^{2} \longleftarrow \sigma_{y}^{2} \cdot \left[1 - \frac{\sigma_{y}^{2}}{c} \cdot g\left(\frac{(\mu_{x} - \mu_{y})}{c}, \frac{\varepsilon}{c}\right)\right]$$

$$c^{2} = 2\beta^{2} + \sigma_{x}^{2} + \sigma_{y}^{2}$$

$$q_{i,k} = \frac{10}{c_{max,k}}(c_{i,k})$$

*Nassar et al, "The evaluative image of the city", 1990 Salesse et. al, "The Collaborative Image of The City: Mapping the Inequality of Urban Perception", 2013 **Minka et al, "TrueSkill 2: An improved Bayesian skill rating system", 2018 Dubey et. al, "Deep Learning the City : Quantifying Urban Perception At A Global Scale", 2016

Data Pre-processing 14

Processed samples

Image	ID	Safety	Lively	Wealthy	Beauty	Boring	Depressive
	513d7e23fdc9f	7.42	8.58	6.5	7.3	2.64	1.23
	513f320cfdc9f	6.07	4.97	7.13	<mark>8.</mark> 61	<mark>1.67</mark>	0.86

Statistics

Place Pulse 1.0								
City	# images	safe mean	$wealth\ mean$	unique mean				
Linz	650	4.85	5.01	4.83				
Boston	1237	4.93	4.97	4.76				
New York	1705	4.47	4.31	4.46				
Salzburg	544	4.75	4.89	5.04				
Total	4136							

Place Pulse 2.0								
Continent	#countries	#cities	#images					
Europe	19	22	38,747					
North America	3	17	37504					
South America	2	5	12,524					
Asia	5	7	11,417					
Oceania	1	2	6,097					
Africa	2	3	5,101					
Total	32	56	111,390					

Place Pulse 2.0								
Category	# comparisons	# images	mean					
Safety	368,926	111,389	5.188					
Lively	267,292	111,348	5.085					
Beautiful	175,361	110,766	4.920					
Wealthy	152,241	107,795	4.890					
Depressing	132,467	105,495	4.816					
Boring	127,362	106,363	4.810					
Total	1,223,649							

Data Pre-processing **16**

Exploratory Analysis

Geographical city distribution

Note: Same color means same country.

Number of images per continent

Number of comparisons

Comparisons number

Exploratory Analysis 20

Number of images per geographical level

Place Pulse 2.0									
Category/Level	City	Country	Continent	Global					
safety	20,143	45,640	85,890	111,390					
lively	14,803	38,216	79,788	111,349					
Beautiful	9,410	28,811	66,792	110,767					
Wealthy	7,642	24,326	57,780	107,796					
Depressing	6,556	21,171	52,504	105,496					
Boring	6,148	20,931	52,031	106,364					

Dataset Limitations

Individual perception

Safe perception

Unsafe perception

*https://www.nytimes.com/2019/08/08/nyregion/newyorktoday/times-square-panic-safety.html#:~:text=Actually%2C%20Times%20Square%20is%20one,23%2C000%20major%20crimes%20were%20recorded.

**https://www.japantimes.co.jp/news/2019/10/04/national/media-national/rip-off-bars-japan-tourist-boom/

Lack of samples

Place Pulse 1.0 < 4 140 Images Place Pulse 2.0 < 112 000 Images

UCSP | RICS | CONCYTEC

Limitations 24

Imbalance of samples

Safety category perception

UCSP | RICS | CONCYTEC

Limitations 25

Imbalance of samples

Limitations

26

Imbalance of samples per category in Chicago and Rio de Janeiro

*Positive Samples: safe, beautiful, wealthy, lively, not depressing, not boring. *Negative Samples: not safe, not beautiful, not wealthy, not lively, depressing, boring.

Non-Reliable Score Distribution

UCSP | RICS | CONCYTEC

Limitations 27

Faulty/Blank/None samples

UCSP | RICS | CONCYTEC

Point of View of samples

UCSP | RICS | CONCYTEC

Panoramic samples

Angle: 90

Panoramic

Changes over time

ID: 3936

ID:

2011

2019

Data Preparation

Perceptual scores

UCSP | RICS | CONCYTEC

Data Preparation 33

Data labeling

We define a parameter $\,\delta\,$ which will helps to labeling our data.

$$\hat{y}_{i,k} = q_{i,k}$$

$$y_{i,k} = \begin{cases} 1 & \text{if } (q_{i,k}) \text{in the top } \delta\% \\ -1 & \text{if } (q_{i,k}) \text{in the bottom } \delta\% \end{cases}$$

Data Preparation

34

UCSP | RICS | CONCYTEC

Perceptual Category

Data Preparation **35**

Evaluating δ values

UCSP | RICS | CONCYTEC

Ð

Data Preparation 36

Models Configurations

Baseline model: Transfer Learning (TL) & Fine Tuning (FT)

* Using VGG, ResNet, and Xception

* **Input shape:** 224x224.

UCSP | RICS | CONCYTEC

Models Configurations **38**

GAP model: Transfer Learning (TL) & Fine Tuning (FT)

* Using VGG, ResNet, and Xception

* Input shape: 224x224.

Models Configurations **39**

GAN model: Discriminator & Generator

Models Configurations

40

* Input shape: 32x32

GAN model: Discriminator configuration

Discriminator								
Layer	Input	Channels	Kernel size	Stride	Activation			
Conv	$32 \times 32 \times 3$	32	3×3	1	LeakyReLU			
Conv	$32 \times 32 \times 32$	32	3×3	2	LeakyReLU			
DropOut (0.2)	$16\times 16\times 32$		-	-	-			
Conv	$16 \times 16 \times 32$	64	3×3	1	LeakyReLU			
Conv	$16 \times 16 \times 64$	64	3×3	2	LeakyReLU			
DropOut (0.2)	$8 \times 8 \times 64$	-	-		-			
Conv	$8 \times 8 \times 64$	128	3×3	1	LeakyReLU			
Conv	$8 \times 8 \times 128$	128	3×3	2	LeakyReLU			
DropOut (0.2)	$4 \times 4 \times 128$	-	-	-	-			
Conv	$4 \times 4 \times 128$	256	3×3	1	LeakyReLU			
Flatten	$4 \times 4 \times 256$	-	-		-			
Dense	128	-	-	-	-			
DropOut (0.4)	128	-	-	-	-			
Dense	3	-	-	-	Softmax			
Total parameters	1 107 882		h		Ē.			

Models Configurations

41

GAN model: Generator configuration

	Generator								
Layer	Input	Channels	Kernel size	Stride	Activation				
Latent	100	-	-	-	-				
Dense	4096	-	-	-	LeakyReLU				
Re-shape	$4 \times 4 \times 256$	2	<u> </u>	-	-				
Deconv	$4 \times 4 \times 256$	256	4×4	2	LeakyReLU				
Deconv	$8 \times 8 \times 256$	128	4×4	2	LeakyReLU				
Deconv	$16 \times 16 \times 128$	64	4×4	2	LeakyReLU				
Conv	$32 \times 32 \times 64$	3	3×3	1	Tanh				
Total parameters	2 119 811								

Models parameters and hyperparameters

Summary of model parameters								
Name	Name Model hyperparameters							
Method	Input	Batch	Opt	LR	Ep/It	CV	Geo. level	
TL_VGG	4096	-	lbfgs	-	1000	5	Global/City	
TL_VGG_GAP	512	-	lbfgs	-	1000	5	Global//city	
FT_VGG	$224\times224\times3$	128	Adam	$1e^{-3}$	100	5	Global/City	
FT_VGG_GAP	$224\times224\times3$	128	Adam	$1e^{-3}$	100	5	Global/City	
SSL_GAN_Dis	$32 \times 32 \times 3$	128	Adam	$1e^{-3}$	100	5	Global	
SSL_GAN_Gen	100	128	Adam	$1e^{-3}$	100	5	Global	

* Parameters were found using GridSearchCV.

- * Trained on GPU NVIDIA GeForce GTX 1070, 8 Gb VRAM.
- * EarlyStop in 30 epochs and DecayLR every 8 epochs.

Experiments & Results

Metrics

- Accuracy What percent of the data were predicted correct?
- **Precision** What percent of your predictions were correct?
- **Recall** What percent of the positive cases did you catch?
- **F1 score** What percent of positive predictions were correct?

$$Accuracy = \frac{T_P + T_N}{T_P + T_N + F_P + F_N}$$

$$T_P$$

$$Precision = \frac{1}{T_P + F_P}$$

$$Recall = \frac{T_P}{T_P + F_N}$$

45

$$F1_{score} = 2 \frac{Precision * Recall}{Precision + Recall}$$

UCSP | RICS | CONCYTEC Experiments & Results

Data Split

				7		
[1	raining dat	a		Test data
plit 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
olit 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
olit 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Finding
olit 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Paramete
plit 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	

* We use 20% of the training set to validation set.

- * 5 Cross-Validation
- * StratifiedKFold to avoid classes disproportion

Experiments & Results **46**

* Results of testing using different values of $\,\delta_{\cdot}$

UCSP | RICS | CONCYTEC

Experiments & Results 47

_		auc		accuracy		f1 score	
Model	Method	train	eval	train	eval	entrena	eval
	LinearSVC	63.62	56.50	68.85	65.22	54.78	49.41
VGG	Logistic	60.63	57.52	67.25	65.72	51.42	49.07
	Ridge Classifier	64.72	54.75	69.44	64.38	56.50	49.34
	RBF SVC	45.14	42.42	52.13	52.37	46.93	46.59
2							
	LinearSVC	59.01	57.93	66.51	66.09	49.52	49.06

	LinearSVC	59.01	57.93	66.51	66.09	49.52	49.06
VGG_GAP	Logistic	58.07	57.57	65.95	65.59	46.06	45.61
	Ridge Classifier	59.20	57.93	66.59	65.89	50.27	49.76
	RBF SVC	42.93	41.70	50.25	50.35	47.16	46.75
			2 E	0.0			

Experiments & Results

48

		aı	ıc	accu	racy	f1 sc	ore
Model	Method	train	eval	train	eval	entrena	eval
	-		•			1 	
	LinearSVC	64.44	57.14	69.48	65.79	56.39	51.20
VGG_Places	Logistic	61.74	58.35	68.16	66.44	53.77	51.28
	Ridge Classifier	65.20	55.76	69.84	64.86	57.56	50.67
	RBF SVC	47.32	45.25	56.56	55.69	44.78	44.21

	LinearSVC	60.26	59.76	67.38	66.96	51.65	51.04
VGG_GAP_Places	Logistic	59.40	58.97	66.81	66.62	49.16	48.90
	Ridge Classifier	60.45	59.15	67.45	66.94	52.23	51.53
	RBF SVC	44.40	42.47	52.59	52.54	43.39	45.05

Experiments & Results

49

		aı	ιc	accu	racy	f1 sc	ore
Model	Method	train	eval	train	eval	entrena	eval
-		05					
	Linear SVC	61.62	59.10	68.10	66.42	53.63	50.80
ResNet50	Logistic	60.04	59.15	67.25	66.37	51.47	49.70
	Ridge Classifier	62.11	58.38	68.36	66.08	54.59	51.00
	RBF SVC	45.36	44.07	53.46	53.57	44.99	44.98
			54) 	67 - C		for the	

	LinearSVC	55.29	53.25	64.43	63.33	41.66	39.69
X ception	Logistic Regression	53.48	52.75	63.56	63.14	36.72	35.87
-	Ridge Classifier	57.23	52.22	65.22	63.04	45.63	42.11
	RBF SVC	45.575	44.99	49.12	49.12	55.01	55.05

Experiments & Results

50

Results: Fine Tuning (FT)

	auc		accu	racy	f1 score	
Models "FT"	train	eval	train	eval	train	eval
VGG	77.83	77.42	74.01	64.71	74.01	64.69
VGG_GAP	76.145	75.59	69.40	66.88	69.41	66.87
VGG_Places	77.98	77.35	70.52	67.28	70.52	67.28
VGG_GAP_Places	74.95	74.75	68.71	67.26	68.71	67.27
ResNet50	76.362	72.71	70.36	65.64	67.35	64.98

Experiments & Results

51

		auc		accu	iracy	f1 score	
Model 32x32x3	CV	train	eval	train	eval	train	eval
	0	80.95	80.97	90.26	59.06	90.26	59.04
	1	81.43	81.45	89.42	61.50	89.42	61.48
SSL_GAN	2	81.43	81.45	89.56	62.58	89.56	62.57
	3	80.59	80.66	90.01	61.52	90.01	61.54
	4	80.61	80.63	89.38	61.14	89.38	61.13

Experiments & Results

52

Experiments & Results 53

				uc	accu	iracy	f1 s	core
Model 32x32x3	CV	iteration	train	eval	train	eval	train	eval
	0	23788	73.89	73.89	78.90	78.12	78.90	78.12
	1	58550	80.21	80.22	92.18	81.25	92.18	81.25
SSL_GAN	2	21951	73.60	73.60	81.25	79.68	81.25	79.68
	3	23180	73.53	73.53	76.56	78.90	76.56	78.90
	4	8602	69.84	69.84	74.21	78.90	74.21	78.90

Experiments & Results

54

Experiments & Results **55**

Website

UCSP | RICS | CONCYTEC

Ð

Experiments & Results 56

Training time

	Training time for each model						
Method	Data	Average Time					
SSL_GAN	Global	1 and a half week					
FT_VGG	Global	8 hours					
FT_VGG	56 Cities	6 hours					
FT_VGG_GAP	Global	7 hours					
FT_VGG_GAP	56 Cities	5 hours					
TL_VGG	Global	15 minutes					
TL_VGG	56 Cities	10 minutes					
TL_VGG_GAP	Global	9 minutes					
TL_VGG_GAP	56 Cities	6 minutes					

Conclusions

Main Contributions

- We propose a methodology to analyze the Place Pulse 2.0 dataset since we thought that is better to focus on data first instead of model complexity.
- We show Place Pulse dataset limitations, some of them based on how the dataset was built and others based on the pre-processing.
- We show that in order to get a better performance in how to differentiate safe characteristics, a semi-supervised model fits the necessity of training this complex dataset with the limitations explained before.
- We solved the problem of imbalance, individual city identification, and lack of samples per city using a semi-supervised GAN model. In other words, we can fix 3 dataset limitations in Place Pulse.

Conclusions

Publications

- Felipe Moreno-Vera, Bahram Lavi, and Jorge Poco. "Quantifying Urban Safety Perception on Street View Images". In IEEE/WIC/ACM International Conference on Web Intelligence (WI-IAT '21), December 14–17, 2021, Essedon, Australia.
- Felipe Moreno-Vera, Bahram Lavi, and Jorge Poco. "Urban Perception: Can We Understand Why a Street Is Safe?". In Mexican International Conference on Artificial Intelligence (MICAI '21), October 25-30, 2021, Mexico City, Mexico.
- Felipe Moreno-Vera. "Understanding Safety based on Urban Perception". In International Conference on Intelligent Computing (ICIC '21), August 12-15, 2021, Shenzhen, China.

Conclusions

60

THANKS! Any Questions?