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Introduction



Bangú (RJ) City Center (RJ)
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Which one looks safer?
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Motivation

By understanding how people perceive and 

experience cities, we can create more 

inclusive, attractive, and functional urban 

solutions that meet the needs and 

aspirations of their diverse populations.

Context

Urban perception is shaped by a 

complex interplay of factors. Such as 

physical design, architectural styles, 

street layouts, landmarks, and the 

quality of infrastructure all contribute 

to the visual characteristics that define 

a city's identity. 
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Place Pulse
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Place Pulse
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http://pulse.media.mit.edu/
* Comparisons were made using two random images from random cities.

http://pulse.media.mit.edu/
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Place Pulse 1.0

● Release date: 2013

● 73 806 Comparisons

● 4 136 images

● 2 Countries

● 4 cities

● 3 categories

Place Pulse 2.0

● Release date: 2016

● 1 223 649 Comparisons

● 111 390 images

● 32 countries 

● 56 cities

● 6 categories
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Methodology
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Pipeline
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Data Pre-processing
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Data Samples



Perceptual Scores Rank Scores
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* **

*Nassar et al, “The evaluative image of the city”, 1990
Salesse et. al, “The Collaborative Image of The City: Mapping the Inequality of Urban Perception”, 2013

**Minka et al, “TrueSkill 2: An improved Bayesian skill rating system”, 2018
Dubey et. al, “Deep Learning the City : Quantifying Urban Perception At A Global Scale”, 2016
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Processed samples
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Statistics



Exploratory Analysis
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Geographical city distribution

Note: Same color means same country.
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Number of images per continent
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Number of comparisons
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Number of images per geographical level



Dataset Limitations
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Individual perception

*https://www.nytimes.com/2019/08/08/nyregion/newyorktoday/times-square-panic-safety.html#:~:text=Actually%2C%20Times%20Square%20is%20one,23%2C000%20major%20crimes%20were%20recorded.

**https://www.japantimes.co.jp/news/2019/10/04/national/media-national/rip-off-bars-japan-tourist-boom/

New York*

Tokyo**

Safe perception Unsafe perception

https://www.nytimes.com/2019/08/08/nyregion/newyorktoday/times-square-panic-safety.html#:~:text=Actually%2C%20Times%20Square%20is%20one,23%2C000%20major%20crimes%20were%20recorded
https://www.japantimes.co.jp/news/2019/10/04/national/media-national/rip-off-bars-japan-tourist-boom/
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Lack of samples

Place Pulse 1.0 < 4 140 Images
Place Pulse 2.0 < 112 000 Images
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Imbalance of samples

Safety category perception
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Imbalance of samples

*Positive Samples: safe, beautiful, wealthy, lively, not depressing, not boring.
*Negative Samples: not safe, not beautiful, not wealthy, not lively, depressing, boring.
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Faulty/Blank/None samples
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Point of View of samples
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Panoramic samples

Angle: 90

Panoramic
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Changes over time

2011 2013 2019

ID:       1

ID: 3936
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Perceptual scores

I: (X,Y) . . .

. . .

Image
Perceptual

Scores
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Data labeling

We define a parameter      which will helps to labeling our data.
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Perceptual Category

I: (X,Y) . . .

. . .

Image
Perceptual

Scores

Top     %: 1

Bottom    %: -1 or 0

Perceptual
Category
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Evaluating    values



Models Configurations

37



38383838Models ConfigurationsUCSP | RICS | CONCYTEC

Baseline model: Transfer Learning (TL) & Fine Tuning (FT)

* Using VGG, ResNet, and Xception
* Input shape: 224x224.
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GAP model: Transfer Learning (TL) & Fine Tuning (FT)

* Using VGG, ResNet, and Xception
* Input shape: 224x224.
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GAN model: Discriminator & Generator

* Input shape: 32x32
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GAN model: Discriminator configuration
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GAN model: Generator configuration
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Models parameters and hyperparameters

* Parameters were found using GridSearchCV.
* Trained on GPU NVIDIA GeForce GTX 1070, 8 Gb VRAM.
* EarlyStop in 30 epochs and DecayLR every 8 epochs.



Experiments & Results

44



45454545Experiments & ResultsUCSP | RICS | CONCYTEC

Metrics

● Accuracy — What percent of the data were predicted 
correct?

● Precision — What percent of your predictions were 
correct?

● Recall — What percent of the positive cases did you 
catch?

● F1 score — What percent of positive predictions were 
correct?
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Data Split

* We use 20% of the training set to validation set.
* 5 Cross-Validation
* StratifiedKFold to avoid classes disproportion
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Results: Transfer Learning (TL)

* Results of testing using different values of     .
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Results: Transfer Learning (TL)

* Results of test set.
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Results: Transfer Learning (TL)

* Results of test set.
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Results: Transfer Learning (TL)

* Results of test set.
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Results: Fine Tuning (FT)

* Results of test set.
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Results: GAN

* Results of test set.
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Results: GAN
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Results: GAN

* Results of test set.
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Results: GAN
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Website
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Training time
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Main Contributions

● We propose a methodology to analyze the Place Pulse 2.0 dataset since we thought that is 
better to focus on data first instead of model complexity.

● We show Place Pulse dataset limitations, some of them based on how the dataset was built 
and others based on the pre-processing.

● We show that in order to get a better performance in how to differentiate safe 
characteristics, a semi-supervised model fits the necessity of training this complex dataset 
with the limitations explained before.

● We solved the problem of imbalance, individual city identification, and lack of samples per 
city using a semi-supervised GAN model. In other words, we can fix 3 dataset limitations in 
Place Pulse.
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on Street View Images”. In IEEE/WIC/ACM International Conference on Web Intelligence 
(WI-IAT ’21), December 14–17, 2021, Essedon, Australia.

● Felipe Moreno-Vera, Bahram Lavi, and Jorge Poco. “Urban Perception: Can We Understand 
Why a Street Is Safe?”. In Mexican International Conference on Artificial Intelligence (MICAI 
’21), October 25-30, 2021, Mexico City, Mexico.

● Felipe Moreno-Vera. “Understanding Safety based on Urban Perception”. In International 
Conference on Intelligent Computing (ICIC ’21), August 12-15, 2021, Shenzhen, China.
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